MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1lgs Structured version   Visualization version   Unicode version

Theorem m1lgs 25113
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 (mod  4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 11413 . . . . . . . . 9  |-  -u 1  e.  ZZ
2 oddprm 15515 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32nnnn0d 11351 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
4 zexpcl 12875 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  e.  ZZ )
51, 3, 4sylancr 695 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1 ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
65peano2zd 11485 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
7 eldifi 3732 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
8 prmnn 15388 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
97, 8syl 17 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
106, 9zmodcld 12691 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  NN0 )
1110nn0cnd 11353 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  CC )
12 1cnd 10056 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  CC )
1311, 12, 12subaddd 10410 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
14 2re 11090 . . . . . . . 8  |-  2  e.  RR
1514a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  RR )
169nnrpd 11870 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR+ )
17 0le2 11111 . . . . . . . 8  |-  0  <_  2
1817a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
0  <_  2 )
19 eldifsni 4320 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
209nnred 11035 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR )
21 prmuz2 15408 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
227, 21syl 17 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
23 eluzle 11700 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
2422, 23syl 17 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <_  P )
2515, 20, 24leltned 10190 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  <  P  <->  P  =/=  2 ) )
2619, 25mpbird 247 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
27 modid 12695 . . . . . . 7  |-  ( ( ( 2  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  2  /\  2  <  P ) )  ->  ( 2  mod  P )  =  2 )
2815, 16, 18, 26, 27syl22anc 1327 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  2 )
29 df-2 11079 . . . . . 6  |-  2  =  ( 1  +  1 )
3028, 29syl6eq 2672 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  ( 1  +  1 ) )
3130eqeq1d 2624 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3219neneqd 2799 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  =  2
)
33 2prm 15405 . . . . . . . . . . . 12  |-  2  e.  Prime
34 dvdsprm 15415 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  Prime )  ->  ( P  ||  2  <->  P  = 
2 ) )
3522, 33, 34sylancl 694 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  2  <->  P  =  2 ) )
3632, 35mtbird 315 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  ||  2 )
3736adantr 481 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  2 )
38 1cnd 10056 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  1  e.  CC )
392adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
40 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  2  ||  ( ( P  -  1 )  / 
2 ) )
41 oexpneg 15069 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  -.  2  ||  ( ( P  -  1 )  /  2 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  = 
-u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4238, 39, 40, 41syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4339nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
44 1exp 12889 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4543, 44syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4645negeqd 10275 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -u (
1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
4742, 46eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
4847oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  ( -u 1  +  1 ) )
49 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
50 neg1cn 11124 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
51 1pneg1e0 11129 . . . . . . . . . . . . . 14  |-  ( 1  +  -u 1 )  =  0
5249, 50, 51addcomli 10228 . . . . . . . . . . . . 13  |-  ( -u
1  +  1 )  =  0
5348, 52syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  0 )
5453oveq2d 6666 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  ( 2  -  0 ) )
55 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
5655subid1i 10353 . . . . . . . . . . 11  |-  ( 2  -  0 )  =  2
5754, 56syl6eq 2672 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  2 )
5857breq2d 4665 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )  <->  P  ||  2
) )
5937, 58mtbird 315 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) ) )
6059ex 450 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( P  - 
1 )  /  2
)  ->  -.  P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) ) ) )
6160con4d 114 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) )
62 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
6362a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  ZZ )
64 moddvds 14991 . . . . . . 7  |-  ( ( P  e.  NN  /\  2  e.  ZZ  /\  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
659, 63, 6, 64syl3anc 1326 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
66 4z 11411 . . . . . . . . . 10  |-  4  e.  ZZ
6766a1i 11 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  ZZ )
68 4ne0 11117 . . . . . . . . . 10  |-  4  =/=  0
6968a1i 11 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  =/=  0 )
70 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
719, 70syl 17 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  NN0 )
7271nn0zd 11480 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  ZZ )
73 dvdsval2 14986 . . . . . . . . 9  |-  ( ( 4  e.  ZZ  /\  4  =/=  0  /\  ( P  -  1 )  e.  ZZ )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7467, 69, 72, 73syl3anc 1326 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7571nn0cnd 11353 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  CC )
7655a1i 11 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  CC )
77 2ne0 11113 . . . . . . . . . . . 12  |-  2  =/=  0
7877a1i 11 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  0 )
7975, 76, 76, 78, 78divdiv1d 10832 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  ( 2  x.  2 ) ) )
80 2t2e4 11177 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
8180oveq2i 6661 . . . . . . . . . 10  |-  ( ( P  -  1 )  /  ( 2  x.  2 ) )  =  ( ( P  - 
1 )  /  4
)
8279, 81syl6eq 2672 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  4 ) )
8382eleq1d 2686 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( P  -  1 )  /  2 )  / 
2 )  e.  ZZ  <->  ( ( P  -  1 )  /  4 )  e.  ZZ ) )
8474, 83bitr4d 271 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
852nnzd 11481 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
86 dvdsval2 14986 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( P  -  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8763, 78, 85, 86syl3anc 1326 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8884, 87bitr4d 271 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <->  2  ||  ( ( P  -  1 )  /  2 ) ) )
8961, 65, 883imtr4d 283 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  ->  4  ||  ( P  -  1
) ) )
9050a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  e.  CC )
91 neg1ne0 11126 . . . . . . . . . . . 12  |-  -u 1  =/=  0
9291a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  =/=  0 )
9362a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  e.  ZZ )
9484biimpa 501 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( (
( P  -  1 )  /  2 )  /  2 )  e.  ZZ )
95 expmulz 12906 . . . . . . . . . . 11  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
9690, 92, 93, 94, 95syl22anc 1327 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
972nncnd 11036 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  CC )
9897, 76, 78divcan2d 10803 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  x.  (
( ( P  - 
1 )  /  2
)  /  2 ) )  =  ( ( P  -  1 )  /  2 ) )
9998adantr 481 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  x.  ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  ( ( P  - 
1 )  /  2
) )
10099oveq2d 6666 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( -u 1 ^ ( ( P  - 
1 )  /  2
) ) )
101 neg1sqe1 12959 . . . . . . . . . . . 12  |-  ( -u
1 ^ 2 )  =  1
102101oveq1i 6660 . . . . . . . . . . 11  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  ( 1 ^ ( ( ( P  -  1 )  / 
2 )  /  2
) )
103 1exp 12889 . . . . . . . . . . . 12  |-  ( ( ( ( P  - 
1 )  /  2
)  /  2 )  e.  ZZ  ->  (
1 ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  1 )
10494, 103syl 17 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 1 ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
105102, 104syl5eq 2668 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
10696, 100, 1053eqtr3d 2664 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  =  1 )
107106oveq1d 6665 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  =  ( 1  +  1 ) )
108107, 29syl6reqr 2675 . . . . . . 7  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  =  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )
109108oveq1d 6665 . . . . . 6  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  mod  P )  =  ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
110109ex 450 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  ->  ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
11189, 110impbid 202 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  4  ||  ( P  -  1 ) ) )
11213, 31, 1113bitr2d 296 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  4  ||  ( P  -  1 ) ) )
113 lgsval3 25040 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -u 1  /L P )  =  ( ( ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 ) )
1141, 113mpan 706 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1  /L
P )  =  ( ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
115114eqeq1d 2624 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1 ) )
116 4nn 11187 . . . . 5  |-  4  e.  NN
117116a1i 11 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  NN )
118 prmz 15389 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1197, 118syl 17 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
120 1zzd 11408 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
121 moddvds 14991 . . . 4  |-  ( ( 4  e.  NN  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  (
( P  mod  4
)  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1
) ) )
122117, 119, 120, 121syl3anc 1326 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  4 )  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1 ) ) )
123112, 115, 1223bitr4d 300 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  ( 1  mod  4 ) ) )
124 1re 10039 . . . 4  |-  1  e.  RR
125 nnrp 11842 . . . . 5  |-  ( 4  e.  NN  ->  4  e.  RR+ )
126116, 125ax-mp 5 . . . 4  |-  4  e.  RR+
127 0le1 10551 . . . 4  |-  0  <_  1
128 1lt4 11199 . . . 4  |-  1  <  4
129 modid 12695 . . . 4  |-  ( ( ( 1  e.  RR  /\  4  e.  RR+ )  /\  ( 0  <_  1  /\  1  <  4
) )  ->  (
1  mod  4 )  =  1 )
130124, 126, 127, 128, 129mp4an 709 . . 3  |-  ( 1  mod  4 )  =  1
131130eqeq2i 2634 . 2  |-  ( ( P  mod  4 )  =  ( 1  mod  4 )  <->  ( P  mod  4 )  =  1 )
132123, 131syl6bb 276 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    mod cmo 12668   ^cexp 12860    || cdvds 14983   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  2sqlem11  25154  2sqblem  25156
  Copyright terms: Public domain W3C validator