MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2 Structured version   Visualization version   Unicode version

Theorem lgsquad2 25111
Description: Extend lgsquad 25108 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
Assertion
Ref Expression
lgsquad2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )

Proof of Theorem lgsquad2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2  |-  ( ph  ->  M  e.  NN )
2 lgsquad2.2 . 2  |-  ( ph  ->  -.  2  ||  M
)
3 lgsquad2.3 . 2  |-  ( ph  ->  N  e.  NN )
4 lgsquad2.4 . 2  |-  ( ph  ->  -.  2  ||  N
)
5 lgsquad2.5 . 2  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
63adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  NN )
74adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  N )
8 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
9 eldifi 3732 . . . . . 6  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  e.  Prime )
108, 9syl 17 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  Prime )
11 prmnn 15388 . . . . 5  |-  ( m  e.  Prime  ->  m  e.  NN )
1210, 11syl 17 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  NN )
13 eldifsni 4320 . . . . . . . 8  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  =/=  2 )
148, 13syl 17 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  =/=  2
)
1514necomd 2849 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  2  =/=  m
)
1615neneqd 2799 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  =  m )
17 2z 11409 . . . . . . 7  |-  2  e.  ZZ
18 uzid 11702 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
1917, 18ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
20 dvdsprm 15415 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  m  e.  Prime )  ->  (
2  ||  m  <->  2  =  m ) )
2119, 10, 20sylancr 695 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( 2  ||  m 
<->  2  =  m ) )
2216, 21mtbird 315 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  m )
236nnzd 11481 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  ZZ )
2412nnzd 11481 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ZZ )
25 gcdcom 15235 . . . . . 6  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  gcd  m
)  =  ( m  gcd  N ) )
2623, 24, 25syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  ( m  gcd  N ) )
27 simprr 796 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  gcd  N )  =  1 )
2826, 27eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  1 )
29 simprl 794 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  e.  ( Prime  \  { 2 } ) )
308adantr 481 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
31 eldifi 3732 . . . . . . . 8  |-  ( n  e.  ( Prime  \  {
2 } )  ->  n  e.  Prime )
32 prmrp 15424 . . . . . . . 8  |-  ( ( n  e.  Prime  /\  m  e.  Prime )  ->  (
( n  gcd  m
)  =  1  <->  n  =/=  m ) )
3331, 10, 32syl2anr 495 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  <-> 
n  =/=  m ) )
3433biimpd 219 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  ->  n  =/=  m
) )
3534impr 649 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  =/=  m
)
36 lgsquad 25108 . . . . 5  |-  ( ( n  e.  ( Prime  \  { 2 } )  /\  m  e.  ( Prime  \  { 2 } )  /\  n  =/=  m )  ->  (
( n  /L
m )  x.  (
m  /L n ) )  =  (
-u 1 ^ (
( ( n  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) ) )
3729, 30, 35, 36syl3anc 1326 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  ( ( n  /L m )  x.  ( m  /L n ) )  =  ( -u 1 ^ ( ( ( n  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
38 biid 251 . . . 4  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  m ) )  =  1  -> 
( ( x  /L m )  x.  ( m  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  m ) )  =  1  ->  ( (
x  /L m )  x.  ( m  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( m  -  1 )  / 
2 ) ) ) ) )
396, 7, 12, 22, 28, 37, 38lgsquad2lem2 25110 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  /L m )  x.  ( m  /L N ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
40 lgscl 25036 . . . . 5  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  /L
N )  e.  ZZ )
4124, 23, 40syl2anc 693 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  /L N )  e.  ZZ )
42 lgscl 25036 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  /L
m )  e.  ZZ )
4323, 24, 42syl2anc 693 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  /L m )  e.  ZZ )
44 zcn 11382 . . . . 5  |-  ( ( m  /L N )  e.  ZZ  ->  ( m  /L N )  e.  CC )
45 zcn 11382 . . . . 5  |-  ( ( N  /L m )  e.  ZZ  ->  ( N  /L m )  e.  CC )
46 mulcom 10022 . . . . 5  |-  ( ( ( m  /L
N )  e.  CC  /\  ( N  /L
m )  e.  CC )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4744, 45, 46syl2an 494 . . . 4  |-  ( ( ( m  /L
N )  e.  ZZ  /\  ( N  /L
m )  e.  ZZ )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4841, 43, 47syl2anc 693 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4912nncnd 11036 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  CC )
50 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
51 subcl 10280 . . . . . . 7  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( m  -  1 )  e.  CC )
5249, 50, 51sylancl 694 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  - 
1 )  e.  CC )
5352halfcld 11277 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  -  1 )  / 
2 )  e.  CC )
546nncnd 11036 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  CC )
55 subcl 10280 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
5654, 50, 55sylancl 694 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  - 
1 )  e.  CC )
5756halfcld 11277 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  -  1 )  / 
2 )  e.  CC )
5853, 57mulcomd 10061 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  =  ( ( ( N  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) )
5958oveq2d 6666 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )
6039, 48, 593eqtr4d 2666 . 2  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
61 biid 251 . 2  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
621, 2, 3, 4, 5, 60, 61lgsquad2lem2 25110 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-lgs 25020
This theorem is referenced by:  lgsquad3  25112
  Copyright terms: Public domain W3C validator