| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsquad2 | Structured version Visualization version Unicode version | ||
| Description: Extend lgsquad 25108 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsquad2.1 |
|
| lgsquad2.2 |
|
| lgsquad2.3 |
|
| lgsquad2.4 |
|
| lgsquad2.5 |
|
| Ref | Expression |
|---|---|
| lgsquad2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsquad2.1 |
. 2
| |
| 2 | lgsquad2.2 |
. 2
| |
| 3 | lgsquad2.3 |
. 2
| |
| 4 | lgsquad2.4 |
. 2
| |
| 5 | lgsquad2.5 |
. 2
| |
| 6 | 3 | adantr 481 |
. . . 4
|
| 7 | 4 | adantr 481 |
. . . 4
|
| 8 | simprl 794 |
. . . . . 6
| |
| 9 | eldifi 3732 |
. . . . . 6
| |
| 10 | 8, 9 | syl 17 |
. . . . 5
|
| 11 | prmnn 15388 |
. . . . 5
| |
| 12 | 10, 11 | syl 17 |
. . . 4
|
| 13 | eldifsni 4320 |
. . . . . . . 8
| |
| 14 | 8, 13 | syl 17 |
. . . . . . 7
|
| 15 | 14 | necomd 2849 |
. . . . . 6
|
| 16 | 15 | neneqd 2799 |
. . . . 5
|
| 17 | 2z 11409 |
. . . . . . 7
| |
| 18 | uzid 11702 |
. . . . . . 7
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . 6
|
| 20 | dvdsprm 15415 |
. . . . . 6
| |
| 21 | 19, 10, 20 | sylancr 695 |
. . . . 5
|
| 22 | 16, 21 | mtbird 315 |
. . . 4
|
| 23 | 6 | nnzd 11481 |
. . . . . 6
|
| 24 | 12 | nnzd 11481 |
. . . . . 6
|
| 25 | gcdcom 15235 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 693 |
. . . . 5
|
| 27 | simprr 796 |
. . . . 5
| |
| 28 | 26, 27 | eqtrd 2656 |
. . . 4
|
| 29 | simprl 794 |
. . . . 5
| |
| 30 | 8 | adantr 481 |
. . . . 5
|
| 31 | eldifi 3732 |
. . . . . . . 8
| |
| 32 | prmrp 15424 |
. . . . . . . 8
| |
| 33 | 31, 10, 32 | syl2anr 495 |
. . . . . . 7
|
| 34 | 33 | biimpd 219 |
. . . . . 6
|
| 35 | 34 | impr 649 |
. . . . 5
|
| 36 | lgsquad 25108 |
. . . . 5
| |
| 37 | 29, 30, 35, 36 | syl3anc 1326 |
. . . 4
|
| 38 | biid 251 |
. . . 4
| |
| 39 | 6, 7, 12, 22, 28, 37, 38 | lgsquad2lem2 25110 |
. . 3
|
| 40 | lgscl 25036 |
. . . . 5
| |
| 41 | 24, 23, 40 | syl2anc 693 |
. . . 4
|
| 42 | lgscl 25036 |
. . . . 5
| |
| 43 | 23, 24, 42 | syl2anc 693 |
. . . 4
|
| 44 | zcn 11382 |
. . . . 5
| |
| 45 | zcn 11382 |
. . . . 5
| |
| 46 | mulcom 10022 |
. . . . 5
| |
| 47 | 44, 45, 46 | syl2an 494 |
. . . 4
|
| 48 | 41, 43, 47 | syl2anc 693 |
. . 3
|
| 49 | 12 | nncnd 11036 |
. . . . . . 7
|
| 50 | ax-1cn 9994 |
. . . . . . 7
| |
| 51 | subcl 10280 |
. . . . . . 7
| |
| 52 | 49, 50, 51 | sylancl 694 |
. . . . . 6
|
| 53 | 52 | halfcld 11277 |
. . . . 5
|
| 54 | 6 | nncnd 11036 |
. . . . . . 7
|
| 55 | subcl 10280 |
. . . . . . 7
| |
| 56 | 54, 50, 55 | sylancl 694 |
. . . . . 6
|
| 57 | 56 | halfcld 11277 |
. . . . 5
|
| 58 | 53, 57 | mulcomd 10061 |
. . . 4
|
| 59 | 58 | oveq2d 6666 |
. . 3
|
| 60 | 39, 48, 59 | 3eqtr4d 2666 |
. 2
|
| 61 | biid 251 |
. 2
| |
| 62 | 1, 2, 3, 4, 5, 60, 61 | lgsquad2lem2 25110 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-dvds 14984 df-gcd 15217 df-prm 15386 df-phi 15471 df-pc 15542 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-gsum 16103 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-field 18750 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-nzr 19258 df-rlreg 19283 df-domn 19284 df-idom 19285 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-lgs 25020 |
| This theorem is referenced by: lgsquad3 25112 |
| Copyright terms: Public domain | W3C validator |