MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dif Structured version   Visualization version   Unicode version

Theorem o1dif 14360
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1dif.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
o1dif.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
o1dif.3  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  e.  O(1) )
Assertion
Ref Expression
o1dif  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( x  e.  A  |->  C )  e.  O(1) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem o1dif
StepHypRef Expression
1 o1dif.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  e.  O(1) )
2 o1sub 14346 . . . . 5  |-  ( ( ( x  e.  A  |->  B )  e.  O(1)  /\  ( x  e.  A  |->  ( B  -  C
) )  e.  O(1) )  ->  ( ( x  e.  A  |->  B )  oF  -  (
x  e.  A  |->  ( B  -  C ) ) )  e.  O(1) )
32expcom 451 . . . 4  |-  ( ( x  e.  A  |->  ( B  -  C ) )  e.  O(1)  ->  (
( x  e.  A  |->  B )  e.  O(1)  -> 
( ( x  e.  A  |->  B )  oF  -  ( x  e.  A  |->  ( B  -  C ) ) )  e.  O(1) ) )
41, 3syl 17 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  ->  ( ( x  e.  A  |->  B )  oF  -  (
x  e.  A  |->  ( B  -  C ) ) )  e.  O(1) ) )
5 o1dif.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 o1dif.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
75, 6subcld 10392 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  C )  e.  CC )
87ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  ( B  -  C
)  e.  CC )
9 dmmptg 5632 . . . . . . . . 9  |-  ( A. x  e.  A  ( B  -  C )  e.  CC  ->  dom  ( x  e.  A  |->  ( B  -  C ) )  =  A )
108, 9syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( x  e.  A  |->  ( B  -  C ) )  =  A )
11 o1dm 14261 . . . . . . . . 9  |-  ( ( x  e.  A  |->  ( B  -  C ) )  e.  O(1)  ->  dom  ( x  e.  A  |->  ( B  -  C
) )  C_  RR )
121, 11syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( x  e.  A  |->  ( B  -  C ) )  C_  RR )
1310, 12eqsstr3d 3640 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
14 reex 10027 . . . . . . . 8  |-  RR  e.  _V
1514ssex 4802 . . . . . . 7  |-  ( A 
C_  RR  ->  A  e. 
_V )
1613, 15syl 17 . . . . . 6  |-  ( ph  ->  A  e.  _V )
17 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
18 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  =  ( x  e.  A  |->  ( B  -  C ) ) )
1916, 5, 7, 17, 18offval2 6914 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  -  ( x  e.  A  |->  ( B  -  C ) ) )  =  ( x  e.  A  |->  ( B  -  ( B  -  C ) ) ) )
205, 6nncand 10397 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  ( B  -  C ) )  =  C )
2120mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  ( B  -  C )
) )  =  ( x  e.  A  |->  C ) )
2219, 21eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  -  ( x  e.  A  |->  ( B  -  C ) ) )  =  ( x  e.  A  |->  C ) )
2322eleq1d 2686 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  oF  -  (
x  e.  A  |->  ( B  -  C ) ) )  e.  O(1)  <->  (
x  e.  A  |->  C )  e.  O(1) ) )
244, 23sylibd 229 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  ->  ( x  e.  A  |->  C )  e.  O(1) ) )
25 o1add 14344 . . . . 5  |-  ( ( ( x  e.  A  |->  ( B  -  C
) )  e.  O(1)  /\  ( x  e.  A  |->  C )  e.  O(1) )  ->  ( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1) )
2625ex 450 . . . 4  |-  ( ( x  e.  A  |->  ( B  -  C ) )  e.  O(1)  ->  (
( x  e.  A  |->  C )  e.  O(1)  -> 
( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1) ) )
271, 26syl 17 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  O(1)  ->  ( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1) ) )
28 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
2916, 7, 6, 18, 28offval2 6914 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( ( B  -  C )  +  C ) ) )
305, 6npcand 10396 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( B  -  C
)  +  C )  =  B )
3130mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( ( B  -  C )  +  C
) )  =  ( x  e.  A  |->  B ) )
3229, 31eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  B ) )
3332eleq1d 2686 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  ( B  -  C ) )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1)  <->  (
x  e.  A  |->  B )  e.  O(1) ) )
3427, 33sylibd 229 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  O(1)  ->  ( x  e.  A  |->  B )  e.  O(1) ) )
3524, 34impbid 202 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( x  e.  A  |->  C )  e.  O(1) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935    + caddc 9939    - cmin 10266   O(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-o1 14221
This theorem is referenced by:  dchrmusum2  25183  dchrvmasumiflem2  25191  dchrisum0lem2a  25206  dchrisum0lem2  25207  rplogsum  25216  dirith2  25217  mulogsumlem  25220  mulogsum  25221  vmalogdivsum2  25227  vmalogdivsum  25228  2vmadivsumlem  25229  selberg3lem1  25246  selberg4lem1  25249  selberg4  25250  pntrlog2bndlem4  25269
  Copyright terms: Public domain W3C validator