| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrvmasumiflem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dchrvmasum 25214. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z |
|
| rpvmasum.l |
|
| rpvmasum.a |
|
| rpvmasum.g |
|
| rpvmasum.d |
|
| rpvmasum.1 |
|
| dchrisum.b |
|
| dchrisum.n1 |
|
| dchrvmasumif.f |
|
| dchrvmasumif.c |
|
| dchrvmasumif.s |
|
| dchrvmasumif.1 |
|
| dchrvmasumif.g |
|
| dchrvmasumif.e |
|
| dchrvmasumif.t |
|
| dchrvmasumif.2 |
|
| Ref | Expression |
|---|---|
| dchrvmasumiflem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 10055 |
. 2
| |
| 2 | fzfid 12772 |
. . . . . 6
| |
| 3 | rpvmasum.g |
. . . . . . . 8
| |
| 4 | rpvmasum.z |
. . . . . . . 8
| |
| 5 | rpvmasum.d |
. . . . . . . 8
| |
| 6 | rpvmasum.l |
. . . . . . . 8
| |
| 7 | dchrisum.b |
. . . . . . . . 9
| |
| 8 | 7 | ad2antrr 762 |
. . . . . . . 8
|
| 9 | elfzelz 12342 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 482 |
. . . . . . . 8
|
| 11 | 3, 4, 5, 6, 8, 10 | dchrzrhcl 24970 |
. . . . . . 7
|
| 12 | elfznn 12370 |
. . . . . . . . . . . 12
| |
| 13 | 12 | adantl 482 |
. . . . . . . . . . 11
|
| 14 | mucl 24867 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
|
| 16 | 15 | zred 11482 |
. . . . . . . . 9
|
| 17 | 16, 13 | nndivred 11069 |
. . . . . . . 8
|
| 18 | 17 | recnd 10068 |
. . . . . . 7
|
| 19 | 11, 18 | mulcld 10060 |
. . . . . 6
|
| 20 | 2, 19 | fsumcl 14464 |
. . . . 5
|
| 21 | dchrvmasumif.s |
. . . . . . 7
| |
| 22 | climcl 14230 |
. . . . . . 7
| |
| 23 | 21, 22 | syl 17 |
. . . . . 6
|
| 24 | 23 | adantr 481 |
. . . . 5
|
| 25 | 20, 24 | mulcld 10060 |
. . . 4
|
| 26 | 0cnd 10033 |
. . . . . 6
| |
| 27 | df-ne 2795 |
. . . . . . 7
| |
| 28 | dchrvmasumif.t |
. . . . . . . . . 10
| |
| 29 | climcl 14230 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
|
| 31 | 30 | adantr 481 |
. . . . . . . 8
|
| 32 | 23 | adantr 481 |
. . . . . . . 8
|
| 33 | simpr 477 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | divcld 10801 |
. . . . . . 7
|
| 35 | 27, 34 | sylan2br 493 |
. . . . . 6
|
| 36 | 26, 35 | ifclda 4120 |
. . . . 5
|
| 37 | 36 | adantr 481 |
. . . 4
|
| 38 | rpvmasum.a |
. . . . 5
| |
| 39 | rpvmasum.1 |
. . . . 5
| |
| 40 | dchrisum.n1 |
. . . . 5
| |
| 41 | dchrvmasumif.f |
. . . . 5
| |
| 42 | dchrvmasumif.c |
. . . . 5
| |
| 43 | dchrvmasumif.1 |
. . . . 5
| |
| 44 | 4, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43 | dchrmusum2 25183 |
. . . 4
|
| 45 | rpssre 11843 |
. . . . 5
| |
| 46 | o1const 14350 |
. . . . 5
| |
| 47 | 45, 36, 46 | sylancr 695 |
. . . 4
|
| 48 | 25, 37, 44, 47 | o1mul2 14355 |
. . 3
|
| 49 | fzfid 12772 |
. . . . . . 7
| |
| 50 | 8 | adantr 481 |
. . . . . . . . 9
|
| 51 | elfzelz 12342 |
. . . . . . . . . 10
| |
| 52 | 51 | adantl 482 |
. . . . . . . . 9
|
| 53 | 3, 4, 5, 6, 50, 52 | dchrzrhcl 24970 |
. . . . . . . 8
|
| 54 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 55 | 12 | nnrpd 11870 |
. . . . . . . . . . . . 13
|
| 56 | rpdivcl 11856 |
. . . . . . . . . . . . 13
| |
| 57 | 54, 55, 56 | syl2an 494 |
. . . . . . . . . . . 12
|
| 58 | elfznn 12370 |
. . . . . . . . . . . . 13
| |
| 59 | 58 | nnrpd 11870 |
. . . . . . . . . . . 12
|
| 60 | ifcl 4130 |
. . . . . . . . . . . 12
| |
| 61 | 57, 59, 60 | syl2an 494 |
. . . . . . . . . . 11
|
| 62 | 61 | relogcld 24369 |
. . . . . . . . . 10
|
| 63 | 58 | adantl 482 |
. . . . . . . . . 10
|
| 64 | 62, 63 | nndivred 11069 |
. . . . . . . . 9
|
| 65 | 64 | recnd 10068 |
. . . . . . . 8
|
| 66 | 53, 65 | mulcld 10060 |
. . . . . . 7
|
| 67 | 49, 66 | fsumcl 14464 |
. . . . . 6
|
| 68 | 19, 67 | mulcld 10060 |
. . . . 5
|
| 69 | 2, 68 | fsumcl 14464 |
. . . 4
|
| 70 | 25, 37 | mulcld 10060 |
. . . 4
|
| 71 | 0cn 10032 |
. . . . . . . . . 10
| |
| 72 | 30 | ad2antrr 762 |
. . . . . . . . . 10
|
| 73 | ifcl 4130 |
. . . . . . . . . 10
| |
| 74 | 71, 72, 73 | sylancr 695 |
. . . . . . . . 9
|
| 75 | 19, 67, 74 | subdid 10486 |
. . . . . . . 8
|
| 76 | 75 | sumeq2dv 14433 |
. . . . . . 7
|
| 77 | 19, 74 | mulcld 10060 |
. . . . . . . 8
|
| 78 | 2, 68, 77 | fsumsub 14520 |
. . . . . . 7
|
| 79 | 20, 24, 37 | mulassd 10063 |
. . . . . . . . 9
|
| 80 | ovif2 6738 |
. . . . . . . . . . . 12
| |
| 81 | 23 | mul01d 10235 |
. . . . . . . . . . . . . 14
|
| 82 | 81 | ifeq1d 4104 |
. . . . . . . . . . . . 13
|
| 83 | 31, 32, 33 | divcan2d 10803 |
. . . . . . . . . . . . . . 15
|
| 84 | 27, 83 | sylan2br 493 |
. . . . . . . . . . . . . 14
|
| 85 | 84 | ifeq2da 4117 |
. . . . . . . . . . . . 13
|
| 86 | 82, 85 | eqtrd 2656 |
. . . . . . . . . . . 12
|
| 87 | 80, 86 | syl5eq 2668 |
. . . . . . . . . . 11
|
| 88 | 87 | adantr 481 |
. . . . . . . . . 10
|
| 89 | 88 | oveq2d 6666 |
. . . . . . . . 9
|
| 90 | 71, 30, 73 | sylancr 695 |
. . . . . . . . . . 11
|
| 91 | 90 | adantr 481 |
. . . . . . . . . 10
|
| 92 | 2, 91, 19 | fsummulc1 14517 |
. . . . . . . . 9
|
| 93 | 79, 89, 92 | 3eqtrrd 2661 |
. . . . . . . 8
|
| 94 | 93 | oveq2d 6666 |
. . . . . . 7
|
| 95 | 76, 78, 94 | 3eqtrd 2660 |
. . . . . 6
|
| 96 | 95 | mpteq2dva 4744 |
. . . . 5
|
| 97 | dchrvmasumif.g |
. . . . . 6
| |
| 98 | dchrvmasumif.e |
. . . . . 6
| |
| 99 | dchrvmasumif.2 |
. . . . . 6
| |
| 100 | 4, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99 | dchrvmasumiflem1 25190 |
. . . . 5
|
| 101 | 96, 100 | eqeltrrd 2702 |
. . . 4
|
| 102 | 69, 70, 101 | o1dif 14360 |
. . 3
|
| 103 | 48, 102 | mpbird 247 |
. 2
|
| 104 | 7 | ad2antrr 762 |
. . . . . 6
|
| 105 | elfzelz 12342 |
. . . . . . 7
| |
| 106 | 105 | adantl 482 |
. . . . . 6
|
| 107 | 3, 4, 5, 6, 104, 106 | dchrzrhcl 24970 |
. . . . 5
|
| 108 | elfznn 12370 |
. . . . . . . 8
| |
| 109 | 108 | adantl 482 |
. . . . . . 7
|
| 110 | vmacl 24844 |
. . . . . . . 8
| |
| 111 | nndivre 11056 |
. . . . . . . 8
| |
| 112 | 110, 111 | mpancom 703 |
. . . . . . 7
|
| 113 | 109, 112 | syl 17 |
. . . . . 6
|
| 114 | 113 | recnd 10068 |
. . . . 5
|
| 115 | 107, 114 | mulcld 10060 |
. . . 4
|
| 116 | 2, 115 | fsumcl 14464 |
. . 3
|
| 117 | relogcl 24322 |
. . . . . 6
| |
| 118 | 117 | adantl 482 |
. . . . 5
|
| 119 | 118 | recnd 10068 |
. . . 4
|
| 120 | ifcl 4130 |
. . . 4
| |
| 121 | 119, 71, 120 | sylancl 694 |
. . 3
|
| 122 | 116, 121 | addcld 10059 |
. 2
|
| 123 | 122 | abscld 14175 |
. . . 4
|
| 124 | 123 | adantrr 753 |
. . 3
|
| 125 | 38 | adantr 481 |
. . . . 5
|
| 126 | 7 | adantr 481 |
. . . . 5
|
| 127 | 40 | adantr 481 |
. . . . 5
|
| 128 | simprl 794 |
. . . . 5
| |
| 129 | simprr 796 |
. . . . 5
| |
| 130 | 4, 6, 125, 3, 5, 39, 126, 127, 128, 129 | dchrvmasum2if 25186 |
. . . 4
|
| 131 | 130 | fveq2d 6195 |
. . 3
|
| 132 | eqle 10139 |
. . 3
| |
| 133 | 124, 131, 132 | syl2anc 693 |
. 2
|
| 134 | 1, 103, 69, 122, 133 | o1le 14383 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-o1 14221 df-lo1 14222 df-sum 14417 df-ef 14798 df-e 14799 df-sin 14800 df-cos 14801 df-pi 14803 df-dvds 14984 df-gcd 15217 df-prm 15386 df-pc 15542 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-qus 16169 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cntz 17750 df-od 17948 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 df-log 24303 df-cxp 24304 df-em 24719 df-vma 24824 df-mu 24827 df-dchr 24958 |
| This theorem is referenced by: dchrvmasumif 25192 |
| Copyright terms: Public domain | W3C validator |