Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem55 Structured version   Visualization version   Unicode version

Theorem stoweidlem55 40272
Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem55.1  |-  F/_ t U
stoweidlem55.2  |-  F/ t
ph
stoweidlem55.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem55.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem55.5  |-  T  = 
U. J
stoweidlem55.6  |-  C  =  ( J  Cn  K
)
stoweidlem55.7  |-  ( ph  ->  A  C_  C )
stoweidlem55.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem55.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem55.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem55.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem55.12  |-  ( ph  ->  U  e.  J )
stoweidlem55.13  |-  ( ph  ->  Z  e.  U )
stoweidlem55.14  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem55.15  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
Assertion
Ref Expression
stoweidlem55  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g, h, q, t, T    f,
r, A, g, q, t    x, f, h, q, t, T    Q, f, g, q    U, f, g, h, q    f, Z, g, h, q, t    ph, f, g, h, q   
w, g, h, t, T    g, W    A, h, x    h, J, t, w    q, p, t, T    A, p    U, p    Z, p    x, r, T    U, r, x    ph, r, x    t, K    x, w, Q    w, U    ph, w    x, Z
Allowed substitution hints:    ph( t, p)    A( w)    C( x, w, t, f, g, h, r, q, p)    Q( t, h, r, p)    U( t)    J( x, f, g, r, q, p)    K( x, w, f, g, h, r, q, p)    W( x, w, t, f, h, r, q, p)    Z( w, r)

Proof of Theorem stoweidlem55
StepHypRef Expression
1 0re 10040 . . . . 5  |-  0  e.  RR
2 stoweidlem55.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32stoweidlem4 40221 . . . . 5  |-  ( (
ph  /\  0  e.  RR )  ->  ( t  e.  T  |->  0 )  e.  A )
41, 3mpan2 707 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  0 )  e.  A
)
54adantr 481 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  |->  0 )  e.  A )
6 stoweidlem55.2 . . . . 5  |-  F/ t
ph
7 nfcv 2764 . . . . . . 7  |-  F/_ t T
8 stoweidlem55.1 . . . . . . 7  |-  F/_ t U
97, 8nfdif 3731 . . . . . 6  |-  F/_ t
( T  \  U
)
10 nfcv 2764 . . . . . 6  |-  F/_ t (/)
119, 10nfeq 2776 . . . . 5  |-  F/ t ( T  \  U
)  =  (/)
126, 11nfan 1828 . . . 4  |-  F/ t ( ph  /\  ( T  \  U )  =  (/) )
13 0le0 11110 . . . . . . . 8  |-  0  <_  0
14 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
15 eqid 2622 . . . . . . . . . 10  |-  ( t  e.  T  |->  0 )  =  ( t  e.  T  |->  0 )
1615fvmpt2 6291 . . . . . . . . 9  |-  ( ( t  e.  T  /\  0  e.  CC )  ->  ( ( t  e.  T  |->  0 ) `  t )  =  0 )
1714, 16mpan2 707 . . . . . . . 8  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  =  0 )
1813, 17syl5breqr 4691 . . . . . . 7  |-  ( t  e.  T  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
1918adantl 482 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
20 0le1 10551 . . . . . . . 8  |-  0  <_  1
2117, 20syl6eqbr 4692 . . . . . . 7  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2221adantl 482 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2319, 22jca 554 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 ) )
2423ex 450 . . . 4  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  ->  ( 0  <_  ( ( t  e.  T  |->  0 ) `
 t )  /\  ( ( t  e.  T  |->  0 ) `  t )  <_  1
) ) )
2512, 24ralrimi 2957 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) )
26 stoweidlem55.13 . . . . . 6  |-  ( ph  ->  Z  e.  U )
27 stoweidlem55.12 . . . . . 6  |-  ( ph  ->  U  e.  J )
2826, 27jca 554 . . . . 5  |-  ( ph  ->  ( Z  e.  U  /\  U  e.  J
) )
29 elunii 4441 . . . . . 6  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  U. J
)
30 stoweidlem55.5 . . . . . 6  |-  T  = 
U. J
3129, 30syl6eleqr 2712 . . . . 5  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  T )
32 eqidd 2623 . . . . . 6  |-  ( t  =  Z  ->  0  =  0 )
33 c0ex 10034 . . . . . 6  |-  0  e.  _V
3432, 15, 33fvmpt 6282 . . . . 5  |-  ( Z  e.  T  ->  (
( t  e.  T  |->  0 ) `  Z
)  =  0 )
3528, 31, 343syl 18 . . . 4  |-  ( ph  ->  ( ( t  e.  T  |->  0 ) `  Z )  =  0 )
3635adantr 481 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( ( t  e.  T  |->  0 ) `
 Z )  =  0 )
3711rzalf 39176 . . . 4  |-  ( ( T  \  U )  =  (/)  ->  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) )
3837adantl 482 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) )
39 nfcv 2764 . . . . . . 7  |-  F/_ t
p
40 nfmpt1 4747 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  0 )
4139, 40nfeq 2776 . . . . . 6  |-  F/ t  p  =  ( t  e.  T  |->  0 )
42 fveq1 6190 . . . . . . . 8  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  t
)  =  ( ( t  e.  T  |->  0 ) `  t ) )
4342breq2d 4665 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <_  (
p `  t )  <->  0  <_  ( ( t  e.  T  |->  0 ) `
 t ) ) )
4442breq1d 4663 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  t )  <_  1  <->  ( ( t  e.  T  |->  0 ) `  t
)  <_  1 ) )
4543, 44anbi12d 747 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 ) ) )
4641, 45ralbid 2983 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) ) )
47 fveq1 6190 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  Z
)  =  ( ( t  e.  T  |->  0 ) `  Z ) )
4847eqeq1d 2624 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  Z )  =  0  <-> 
( ( t  e.  T  |->  0 ) `  Z )  =  0 ) )
4942breq2d 4665 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <  (
p `  t )  <->  0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5041, 49ralbid 2983 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  ( T  \  U
) 0  <  (
p `  t )  <->  A. t  e.  ( T 
\  U ) 0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5146, 48, 503anbi123d 1399 . . . 4  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( A. t  e.  T  ( 0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) )  <->  ( A. t  e.  T  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 )  /\  (
( t  e.  T  |->  0 ) `  Z
)  =  0  /\ 
A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) ) ) )
5251rspcev 3309 . . 3  |-  ( ( ( t  e.  T  |->  0 )  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )  /\  ( ( t  e.  T  |->  0 ) `
 Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
535, 25, 36, 38, 52syl13anc 1328 . 2  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
5411nfn 1784 . . . 4  |-  F/ t  -.  ( T  \  U )  =  (/)
556, 54nfan 1828 . . 3  |-  F/ t ( ph  /\  -.  ( T  \  U )  =  (/) )
56 stoweidlem55.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
57 stoweidlem55.14 . . 3  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
58 stoweidlem55.15 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
59 stoweidlem55.6 . . 3  |-  C  =  ( J  Cn  K
)
60 stoweidlem55.4 . . . 4  |-  ( ph  ->  J  e.  Comp )
6160adantr 481 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  J  e. 
Comp )
62 stoweidlem55.7 . . . 4  |-  ( ph  ->  A  C_  C )
6362adantr 481 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  A  C_  C )
64 stoweidlem55.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
65643adant1r 1319 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
66 stoweidlem55.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
67663adant1r 1319 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
682adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
69 stoweidlem55.11 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7069adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7127adantr 481 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  U  e.  J )
72 neqne 2802 . . . 4  |-  ( -.  ( T  \  U
)  =  (/)  ->  ( T  \  U )  =/=  (/) )
7372adantl 482 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( T 
\  U )  =/=  (/) )
7426adantr 481 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  Z  e.  U )
758, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74stoweidlem53 40270 . 2  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )
7653, 75pm2.61dan 832 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   (,)cioo 12175   topGenctg 16098    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem56  40273
  Copyright terms: Public domain W3C validator