MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Structured version   Visualization version   GIF version

Theorem atantayl 24664
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
Assertion
Ref Expression
atantayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3 ℕ = (ℤ‘1)
2 1zzd 11408 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 ax-icn 9995 . . . 4 i ∈ ℂ
4 halfcl 11257 . . . 4 (i ∈ ℂ → (i / 2) ∈ ℂ)
53, 4mp1i 13 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i / 2) ∈ ℂ)
6 simpl 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
7 mulcl 10020 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
83, 6, 7sylancr 695 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i · 𝐴) ∈ ℂ)
98negcld 10379 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(i · 𝐴) ∈ ℂ)
108absnegd 14188 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘(i · 𝐴)))
11 absmul 14034 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
123, 6, 11sylancr 695 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
13 absi 14026 . . . . . . . . . . 11 (abs‘i) = 1
1413oveq1i 6660 . . . . . . . . . 10 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
15 abscl 14018 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1615adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
1716recnd 10068 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
1817mulid2d 10058 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
1914, 18syl5eq 2668 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘i) · (abs‘𝐴)) = (abs‘𝐴))
2010, 12, 193eqtrd 2660 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘𝐴))
21 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
2220, 21eqbrtrd 4675 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) < 1)
23 logtayl 24406 . . . . . . 7 ((-(i · 𝐴) ∈ ℂ ∧ (abs‘-(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
249, 22, 23syl2anc 693 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
25 ax-1cn 9994 . . . . . . . . 9 1 ∈ ℂ
26 subneg 10330 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2725, 8, 26sylancr 695 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2827fveq2d 6195 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − -(i · 𝐴))) = (log‘(1 + (i · 𝐴))))
2928negeqd 10275 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − -(i · 𝐴))) = -(log‘(1 + (i · 𝐴))))
3024, 29breqtrd 4679 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 + (i · 𝐴))))
31 seqex 12803 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V
3231a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V)
3310, 22eqbrtrrd 4677 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) < 1)
34 logtayl 24406 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (abs‘(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
358, 33, 34syl2anc 693 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
36 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑚 → (-(i · 𝐴)↑𝑛) = (-(i · 𝐴)↑𝑚))
37 id 22 . . . . . . . . . . 11 (𝑛 = 𝑚𝑛 = 𝑚)
3836, 37oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑚 → ((-(i · 𝐴)↑𝑛) / 𝑛) = ((-(i · 𝐴)↑𝑚) / 𝑚))
39 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))
40 ovex 6678 . . . . . . . . . 10 ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ V
4138, 39, 40fvmpt 6282 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
4241adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
43 nnnn0 11299 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
44 expcl 12878 . . . . . . . . . 10 ((-(i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
459, 43, 44syl2an 494 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
46 nncn 11028 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4746adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
48 nnne0 11053 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
4948adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5045, 47, 49divcld 10801 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
5142, 50eqeltrd 2701 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
521, 2, 51serf 12829 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
5352ffvelrnda 6359 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
54 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((i · 𝐴)↑𝑛) = ((i · 𝐴)↑𝑚))
5554, 37oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑚 → (((i · 𝐴)↑𝑛) / 𝑛) = (((i · 𝐴)↑𝑚) / 𝑚))
56 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))
57 ovex 6678 . . . . . . . . . 10 (((i · 𝐴)↑𝑚) / 𝑚) ∈ V
5855, 56, 57fvmpt 6282 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
5958adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
60 expcl 12878 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((i · 𝐴)↑𝑚) ∈ ℂ)
618, 43, 60syl2an 494 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) ∈ ℂ)
6261, 47, 49divcld 10801 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
6359, 62eqeltrd 2701 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
641, 2, 63serf 12829 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
6564ffvelrnda 6359 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
66 simpr 477 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6766, 1syl6eleq 2711 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
68 simpl 473 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1))
69 elfznn 12370 . . . . . . 7 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
7068, 69, 51syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7168, 69, 63syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7238, 55oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑚 → (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
73 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))
74 ovex 6678 . . . . . . . . . 10 (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ V
7572, 73, 74fvmpt 6282 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7675adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7742, 59oveq12d 6668 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7876, 77eqtr4d 2659 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
7968, 69, 78syl2an 494 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
8067, 70, 71, 79sersub 12844 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))))‘𝑘) = ((seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) − (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘)))
811, 2, 30, 32, 35, 53, 65, 80climsub 14364 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))))
82 addcl 10018 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
8325, 8, 82sylancr 695 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ∈ ℂ)
84 bndatandm 24656 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
85 atandm2 24604 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8684, 85sylib 208 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8786simp3d 1075 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ≠ 0)
8883, 87logcld 24317 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
89 subcl 10280 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
9025, 8, 89sylancr 695 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ∈ ℂ)
9186simp2d 1074 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ≠ 0)
9290, 91logcld 24317 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
9388, 92neg2subd 10409 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9481, 93breqtrd 4679 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9550, 62subcld 10392 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ ℂ)
9676, 95eqeltrd 2701 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) ∈ ℂ)
973a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → i ∈ ℂ)
98 negicn 10282 . . . . . . . . 9 -i ∈ ℂ
9943adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
100 expcl 12878 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-i↑𝑚) ∈ ℂ)
10198, 99, 100sylancr 695 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i↑𝑚) ∈ ℂ)
102 expcl 12878 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (i↑𝑚) ∈ ℂ)
1033, 99, 102sylancr 695 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i↑𝑚) ∈ ℂ)
104101, 103subcld 10392 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i↑𝑚) − (i↑𝑚)) ∈ ℂ)
105 2cnd 11093 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
106 2ne0 11113 . . . . . . . 8 2 ≠ 0
107106a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ≠ 0)
10897, 104, 105, 107div23d 10838 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · ((-i↑𝑚) − (i↑𝑚))) / 2) = ((i / 2) · ((-i↑𝑚) − (i↑𝑚))))
109108oveq1d 6665 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)))
1105adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i / 2) ∈ ℂ)
111 expcl 12878 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
1126, 43, 111syl2an 494 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) ∈ ℂ)
113112, 47, 49divcld 10801 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝐴𝑚) / 𝑚) ∈ ℂ)
114110, 104, 113mulassd 10063 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))))
115101, 103, 112subdird 10487 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
1166adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
117 mulneg1 10466 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
1183, 116, 117sylancr 695 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i · 𝐴) = -(i · 𝐴))
119118oveq1d 6665 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = (-(i · 𝐴)↑𝑚))
12098a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → -i ∈ ℂ)
121120, 116, 99mulexpd 13023 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
122119, 121eqtr3d 2658 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
12397, 116, 99mulexpd 13023 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) = ((i↑𝑚) · (𝐴𝑚)))
124122, 123oveq12d 6668 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
125115, 124eqtr4d 2659 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)))
126125oveq1d 6665 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚))
127104, 112, 47, 49divassd 10836 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)))
12845, 61, 47, 49divsubdird 10840 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
129126, 127, 1283eqtr3d 2664 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
130129oveq2d 6666 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
131109, 114, 1303eqtrd 2660 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
132 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑚 → (-i↑𝑛) = (-i↑𝑚))
133 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑚 → (i↑𝑛) = (i↑𝑚))
134132, 133oveq12d 6668 . . . . . . . . 9 (𝑛 = 𝑚 → ((-i↑𝑛) − (i↑𝑛)) = ((-i↑𝑚) − (i↑𝑚)))
135134oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑚 → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · ((-i↑𝑚) − (i↑𝑚))))
136135oveq1d 6665 . . . . . . 7 (𝑛 = 𝑚 → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = ((i · ((-i↑𝑚) − (i↑𝑚))) / 2))
137 oveq2 6658 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
138137, 37oveq12d 6668 . . . . . . 7 (𝑛 = 𝑚 → ((𝐴𝑛) / 𝑛) = ((𝐴𝑚) / 𝑚))
139136, 138oveq12d 6668 . . . . . 6 (𝑛 = 𝑚 → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
140 atantayl.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
141 ovex 6678 . . . . . 6 (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) ∈ V
142139, 140, 141fvmpt 6282 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
143142adantl 482 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
14476oveq2d 6666 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
145131, 143, 1443eqtr4d 2666 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)))
1461, 2, 5, 94, 96, 145isermulc2 14388 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
147 atanval 24611 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
14884, 147syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
149146, 148breqtrrd 4681 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cuz 11687  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  logclog 24301  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-atan 24594
This theorem is referenced by:  atantayl2  24665
  Copyright terms: Public domain W3C validator