Proof of Theorem eff1olem
| Step | Hyp | Ref
| Expression |
| 1 | | cnvimass 5485 |
. . . 4
⊢ (◡ℑ “ 𝐷) ⊆ dom ℑ |
| 2 | | eff1olem.2 |
. . . 4
⊢ 𝑆 = (◡ℑ “ 𝐷) |
| 3 | | imf 13853 |
. . . . . 6
⊢
ℑ:ℂ⟶ℝ |
| 4 | 3 | fdmi 6052 |
. . . . 5
⊢ dom
ℑ = ℂ |
| 5 | 4 | eqcomi 2631 |
. . . 4
⊢ ℂ =
dom ℑ |
| 6 | 1, 2, 5 | 3sstr4i 3644 |
. . 3
⊢ 𝑆 ⊆
ℂ |
| 7 | | eff2 14829 |
. . . . . . 7
⊢
exp:ℂ⟶(ℂ ∖ {0}) |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝑆 ⊆ ℂ →
exp:ℂ⟶(ℂ ∖ {0})) |
| 9 | 8 | feqmptd 6249 |
. . . . 5
⊢ (𝑆 ⊆ ℂ → exp =
(𝑦 ∈ ℂ ↦
(exp‘𝑦))) |
| 10 | 9 | reseq1d 5395 |
. . . 4
⊢ (𝑆 ⊆ ℂ → (exp
↾ 𝑆) = ((𝑦 ∈ ℂ ↦
(exp‘𝑦)) ↾
𝑆)) |
| 11 | | resmpt 5449 |
. . . 4
⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦
(exp‘𝑦)) ↾
𝑆) = (𝑦 ∈ 𝑆 ↦ (exp‘𝑦))) |
| 12 | 10, 11 | eqtrd 2656 |
. . 3
⊢ (𝑆 ⊆ ℂ → (exp
↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (exp‘𝑦))) |
| 13 | 6, 12 | ax-mp 5 |
. 2
⊢ (exp
↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (exp‘𝑦)) |
| 14 | 6 | sseli 3599 |
. . . 4
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ) |
| 15 | 7 | ffvelrni 6358 |
. . . 4
⊢ (𝑦 ∈ ℂ →
(exp‘𝑦) ∈
(ℂ ∖ {0})) |
| 16 | 14, 15 | syl 17 |
. . 3
⊢ (𝑦 ∈ 𝑆 → (exp‘𝑦) ∈ (ℂ ∖
{0})) |
| 17 | 16 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘𝑦) ∈ (ℂ ∖
{0})) |
| 18 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ (ℂ ∖
{0})) |
| 19 | | eldifsn 4317 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ℂ ∖ {0})
↔ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 20 | 18, 19 | sylib 208 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 21 | 20 | simpld 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈
ℂ) |
| 22 | 20 | simprd 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
| 23 | 21, 22 | absrpcld 14187 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ∈
ℝ+) |
| 24 | | reeff1o 24201 |
. . . . . . . . 9
⊢ (exp
↾ ℝ):ℝ–1-1-onto→ℝ+ |
| 25 | | f1ocnv 6149 |
. . . . . . . . 9
⊢ ((exp
↾ ℝ):ℝ–1-1-onto→ℝ+ → ◡(exp ↾
ℝ):ℝ+–1-1-onto→ℝ) |
| 26 | | f1of 6137 |
. . . . . . . . 9
⊢ (◡(exp ↾
ℝ):ℝ+–1-1-onto→ℝ → ◡(exp ↾
ℝ):ℝ+⟶ℝ) |
| 27 | 24, 25, 26 | mp2b 10 |
. . . . . . . 8
⊢ ◡(exp ↾
ℝ):ℝ+⟶ℝ |
| 28 | 27 | ffvelrni 6358 |
. . . . . . 7
⊢
((abs‘𝑥)
∈ ℝ+ → (◡(exp ↾ ℝ)‘(abs‘𝑥)) ∈
ℝ) |
| 29 | 23, 28 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (◡(exp ↾ ℝ)‘(abs‘𝑥)) ∈
ℝ) |
| 30 | 29 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (◡(exp ↾ ℝ)‘(abs‘𝑥)) ∈
ℂ) |
| 31 | | ax-icn 9995 |
. . . . . 6
⊢ i ∈
ℂ |
| 32 | | eff1olem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 33 | 32 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝐷 ⊆
ℝ) |
| 34 | | eff1olem.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
| 35 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (◡abs “ {1}) = (◡abs “ {1}) |
| 36 | | eff1olem.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) |
| 37 | | eff1olem.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
| 38 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (sin
↾ (-(π / 2)[,](π / 2))) = (sin ↾ (-(π / 2)[,](π /
2))) |
| 39 | 34, 35, 32, 36, 37, 38 | efif1olem4 24291 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→(◡abs
“ {1})) |
| 40 | | f1ocnv 6149 |
. . . . . . . . . . 11
⊢ (𝐹:𝐷–1-1-onto→(◡abs
“ {1}) → ◡𝐹:(◡abs “ {1})–1-1-onto→𝐷) |
| 41 | | f1of 6137 |
. . . . . . . . . . 11
⊢ (◡𝐹:(◡abs “ {1})–1-1-onto→𝐷 → ◡𝐹:(◡abs “ {1})⟶𝐷) |
| 42 | 39, 40, 41 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐹:(◡abs “ {1})⟶𝐷) |
| 43 | 42 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ◡𝐹:(◡abs “ {1})⟶𝐷) |
| 44 | 21 | abscld 14175 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ∈
ℝ) |
| 45 | 44 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ∈
ℂ) |
| 46 | 21, 22 | absne0d 14186 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ≠
0) |
| 47 | 21, 45, 46 | divcld 10801 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ ℂ) |
| 48 | 21, 45, 46 | absdivd 14194 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘(𝑥 /
(abs‘𝑥))) =
((abs‘𝑥) /
(abs‘(abs‘𝑥)))) |
| 49 | | absidm 14063 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ →
(abs‘(abs‘𝑥)) =
(abs‘𝑥)) |
| 50 | 21, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘(abs‘𝑥)) =
(abs‘𝑥)) |
| 51 | 50 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
((abs‘𝑥) /
(abs‘(abs‘𝑥)))
= ((abs‘𝑥) /
(abs‘𝑥))) |
| 52 | 45, 46 | dividd 10799 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
((abs‘𝑥) /
(abs‘𝑥)) =
1) |
| 53 | 48, 51, 52 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘(𝑥 /
(abs‘𝑥))) =
1) |
| 54 | | absf 14077 |
. . . . . . . . . . 11
⊢
abs:ℂ⟶ℝ |
| 55 | | ffn 6045 |
. . . . . . . . . . 11
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
| 56 | | fniniseg 6338 |
. . . . . . . . . . 11
⊢ (abs Fn
ℂ → ((𝑥 /
(abs‘𝑥)) ∈
(◡abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1))) |
| 57 | 54, 55, 56 | mp2b 10 |
. . . . . . . . . 10
⊢ ((𝑥 / (abs‘𝑥)) ∈ (◡abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1)) |
| 58 | 47, 53, 57 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ (◡abs “ {1})) |
| 59 | 43, 58 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (◡𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷) |
| 60 | 33, 59 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (◡𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℝ) |
| 61 | 60 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (◡𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ) |
| 62 | | mulcl 10020 |
. . . . . 6
⊢ ((i
∈ ℂ ∧ (◡𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ) → (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ) |
| 63 | 31, 61, 62 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (i
· (◡𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ) |
| 64 | 30, 63 | addcld 10059 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ) |
| 65 | 29, 60 | crimd 13972 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(ℑ‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) = (◡𝐹‘(𝑥 / (abs‘𝑥)))) |
| 66 | 65, 59 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(ℑ‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷) |
| 67 | | ffn 6045 |
. . . . 5
⊢
(ℑ:ℂ⟶ℝ → ℑ Fn
ℂ) |
| 68 | | elpreima 6337 |
. . . . 5
⊢ (ℑ
Fn ℂ → (((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (◡ℑ “ 𝐷) ↔ (((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧
(ℑ‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷))) |
| 69 | 3, 67, 68 | mp2b 10 |
. . . 4
⊢ (((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (◡ℑ “ 𝐷) ↔ (((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧
(ℑ‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷)) |
| 70 | 64, 66, 69 | sylanbrc 698 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (◡ℑ “ 𝐷)) |
| 71 | 70, 2 | syl6eleqr 2712 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ 𝑆) |
| 72 | | efadd 14824 |
. . . . . . 7
⊢ (((◡(exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℂ ∧ (i
· (◡𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ) →
(exp‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘(◡(exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i
· (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 73 | 30, 63, 72 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(exp‘((◡(exp ↾
ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘(◡(exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i
· (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 74 | | fvres 6207 |
. . . . . . . . 9
⊢ ((◡(exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℝ → ((exp
↾ ℝ)‘(◡(exp ↾
ℝ)‘(abs‘𝑥))) = (exp‘(◡(exp ↾ ℝ)‘(abs‘𝑥)))) |
| 75 | 29, 74 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((exp
↾ ℝ)‘(◡(exp ↾
ℝ)‘(abs‘𝑥))) = (exp‘(◡(exp ↾ ℝ)‘(abs‘𝑥)))) |
| 76 | | f1ocnvfv2 6533 |
. . . . . . . . 9
⊢ (((exp
↾ ℝ):ℝ–1-1-onto→ℝ+ ∧
(abs‘𝑥) ∈
ℝ+) → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥)) |
| 77 | 24, 23, 76 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((exp
↾ ℝ)‘(◡(exp ↾
ℝ)‘(abs‘𝑥))) = (abs‘𝑥)) |
| 78 | 75, 77 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(exp‘(◡(exp ↾
ℝ)‘(abs‘𝑥))) = (abs‘𝑥)) |
| 79 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐹‘(𝑥 / (abs‘𝑥))) → (i · 𝑧) = (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) |
| 80 | 79 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐹‘(𝑥 / (abs‘𝑥))) → (exp‘(i · 𝑧)) = (exp‘(i ·
(◡𝐹‘(𝑥 / (abs‘𝑥)))))) |
| 81 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (i · 𝑤) = (i · 𝑧)) |
| 82 | 81 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑧))) |
| 83 | 82 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) = (𝑧 ∈ 𝐷 ↦ (exp‘(i · 𝑧))) |
| 84 | 34, 83 | eqtri 2644 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑧 ∈ 𝐷 ↦ (exp‘(i · 𝑧))) |
| 85 | | fvex 6201 |
. . . . . . . . . 10
⊢
(exp‘(i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ∈ V |
| 86 | 80, 84, 85 | fvmpt 6282 |
. . . . . . . . 9
⊢ ((◡𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷 → (𝐹‘(◡𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) |
| 87 | 59, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(◡𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) |
| 88 | 39 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝐹:𝐷–1-1-onto→(◡abs
“ {1})) |
| 89 | | f1ocnvfv2 6533 |
. . . . . . . . 9
⊢ ((𝐹:𝐷–1-1-onto→(◡abs
“ {1}) ∧ (𝑥 /
(abs‘𝑥)) ∈
(◡abs “ {1})) → (𝐹‘(◡𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥))) |
| 90 | 88, 58, 89 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(◡𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥))) |
| 91 | 87, 90 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(exp‘(i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) = (𝑥 / (abs‘𝑥))) |
| 92 | 78, 91 | oveq12d 6668 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
((exp‘(◡(exp ↾
ℝ)‘(abs‘𝑥))) · (exp‘(i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))) = ((abs‘𝑥) · (𝑥 / (abs‘𝑥)))) |
| 93 | 21, 45, 46 | divcan2d 10803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
((abs‘𝑥) ·
(𝑥 / (abs‘𝑥))) = 𝑥) |
| 94 | 73, 92, 93 | 3eqtrrd 2661 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 = (exp‘((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 95 | 94 | adantrl 752 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ (ℂ ∖ {0}))) → 𝑥 = (exp‘((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 96 | | fveq2 6191 |
. . . . 5
⊢ (𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) → (exp‘𝑦) = (exp‘((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 97 | 96 | eqeq2d 2632 |
. . . 4
⊢ (𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) → (𝑥 = (exp‘𝑦) ↔ 𝑥 = (exp‘((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))))))) |
| 98 | 95, 97 | syl5ibrcom 237 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) → 𝑥 = (exp‘𝑦))) |
| 99 | 14 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
| 100 | 99 | replimd 13937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) |
| 101 | | absef 14927 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ →
(abs‘(exp‘𝑦)) =
(exp‘(ℜ‘𝑦))) |
| 102 | 99, 101 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(exp‘𝑦)) =
(exp‘(ℜ‘𝑦))) |
| 103 | 99 | recld 13934 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (ℜ‘𝑦) ∈ ℝ) |
| 104 | | fvres 6207 |
. . . . . . . . . . 11
⊢
((ℜ‘𝑦)
∈ ℝ → ((exp ↾ ℝ)‘(ℜ‘𝑦)) =
(exp‘(ℜ‘𝑦))) |
| 105 | 103, 104 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((exp ↾
ℝ)‘(ℜ‘𝑦)) = (exp‘(ℜ‘𝑦))) |
| 106 | 102, 105 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(exp‘𝑦)) = ((exp ↾
ℝ)‘(ℜ‘𝑦))) |
| 107 | 106 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) = (◡(exp ↾ ℝ)‘((exp ↾
ℝ)‘(ℜ‘𝑦)))) |
| 108 | | f1ocnvfv1 6532 |
. . . . . . . . 9
⊢ (((exp
↾ ℝ):ℝ–1-1-onto→ℝ+ ∧
(ℜ‘𝑦) ∈
ℝ) → (◡(exp ↾
ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦)) |
| 109 | 24, 103, 108 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡(exp ↾ ℝ)‘((exp ↾
ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦)) |
| 110 | 107, 109 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) = (ℜ‘𝑦)) |
| 111 | 99 | imcld 13935 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (ℑ‘𝑦) ∈ ℝ) |
| 112 | 111 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (ℑ‘𝑦) ∈ ℂ) |
| 113 | | mulcl 10020 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (ℑ‘𝑦) ∈ ℂ) → (i ·
(ℑ‘𝑦)) ∈
ℂ) |
| 114 | 31, 112, 113 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (i · (ℑ‘𝑦)) ∈
ℂ) |
| 115 | | efcl 14813 |
. . . . . . . . . . . . 13
⊢ ((i
· (ℑ‘𝑦))
∈ ℂ → (exp‘(i · (ℑ‘𝑦))) ∈ ℂ) |
| 116 | 114, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘(i ·
(ℑ‘𝑦))) ∈
ℂ) |
| 117 | 103 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (ℜ‘𝑦) ∈ ℂ) |
| 118 | | efcl 14813 |
. . . . . . . . . . . . 13
⊢
((ℜ‘𝑦)
∈ ℂ → (exp‘(ℜ‘𝑦)) ∈ ℂ) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘(ℜ‘𝑦)) ∈
ℂ) |
| 120 | | efne0 14827 |
. . . . . . . . . . . . 13
⊢
((ℜ‘𝑦)
∈ ℂ → (exp‘(ℜ‘𝑦)) ≠ 0) |
| 121 | 117, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘(ℜ‘𝑦)) ≠ 0) |
| 122 | 116, 119,
121 | divcan3d 10806 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((exp‘(ℜ‘𝑦)) · (exp‘(i
· (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦))) = (exp‘(i ·
(ℑ‘𝑦)))) |
| 123 | 100 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘𝑦) = (exp‘((ℜ‘𝑦) + (i ·
(ℑ‘𝑦))))) |
| 124 | | efadd 14824 |
. . . . . . . . . . . . . 14
⊢
(((ℜ‘𝑦)
∈ ℂ ∧ (i · (ℑ‘𝑦)) ∈ ℂ) →
(exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) =
((exp‘(ℜ‘𝑦)) · (exp‘(i ·
(ℑ‘𝑦))))) |
| 125 | 117, 114,
124 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘((ℜ‘𝑦) + (i ·
(ℑ‘𝑦)))) =
((exp‘(ℜ‘𝑦)) · (exp‘(i ·
(ℑ‘𝑦))))) |
| 126 | 123, 125 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (exp‘𝑦) = ((exp‘(ℜ‘𝑦)) · (exp‘(i
· (ℑ‘𝑦))))) |
| 127 | 126, 102 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (((exp‘(ℜ‘𝑦)) · (exp‘(i
· (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦)))) |
| 128 | | elpreima 6337 |
. . . . . . . . . . . . . . . 16
⊢ (ℑ
Fn ℂ → (𝑦 ∈
(◡ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷))) |
| 129 | 3, 67, 128 | mp2b 10 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (◡ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷)) |
| 130 | 129 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡ℑ “ 𝐷) → (ℑ‘𝑦) ∈ 𝐷) |
| 131 | 130, 2 | eleq2s 2719 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑆 → (ℑ‘𝑦) ∈ 𝐷) |
| 132 | 131 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (ℑ‘𝑦) ∈ 𝐷) |
| 133 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (ℑ‘𝑦) → (i · 𝑤) = (i ·
(ℑ‘𝑦))) |
| 134 | 133 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (ℑ‘𝑦) → (exp‘(i ·
𝑤)) = (exp‘(i
· (ℑ‘𝑦)))) |
| 135 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(exp‘(i · (ℑ‘𝑦))) ∈ V |
| 136 | 134, 34, 135 | fvmpt 6282 |
. . . . . . . . . . . 12
⊢
((ℑ‘𝑦)
∈ 𝐷 → (𝐹‘(ℑ‘𝑦)) = (exp‘(i ·
(ℑ‘𝑦)))) |
| 137 | 132, 136 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘(ℑ‘𝑦)) = (exp‘(i ·
(ℑ‘𝑦)))) |
| 138 | 122, 127,
137 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (𝐹‘(ℑ‘𝑦))) |
| 139 | 138 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (◡𝐹‘(𝐹‘(ℑ‘𝑦)))) |
| 140 | | f1ocnvfv1 6532 |
. . . . . . . . . 10
⊢ ((𝐹:𝐷–1-1-onto→(◡abs
“ {1}) ∧ (ℑ‘𝑦) ∈ 𝐷) → (◡𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦)) |
| 141 | 39, 131, 140 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦)) |
| 142 | 139, 141 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (ℑ‘𝑦)) |
| 143 | 142 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))) = (i · (ℑ‘𝑦))) |
| 144 | 110, 143 | oveq12d 6668 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) + (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))) = ((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) |
| 145 | 100, 144 | eqtr4d 2659 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 = ((◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) + (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))) |
| 146 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = (exp‘𝑦) → (abs‘𝑥) = (abs‘(exp‘𝑦))) |
| 147 | 146 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = (exp‘𝑦) → (◡(exp ↾ ℝ)‘(abs‘𝑥)) = (◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦)))) |
| 148 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (exp‘𝑦) → 𝑥 = (exp‘𝑦)) |
| 149 | 148, 146 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑥 = (exp‘𝑦) → (𝑥 / (abs‘𝑥)) = ((exp‘𝑦) / (abs‘(exp‘𝑦)))) |
| 150 | 149 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑥 = (exp‘𝑦) → (◡𝐹‘(𝑥 / (abs‘𝑥))) = (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))) |
| 151 | 150 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = (exp‘𝑦) → (i · (◡𝐹‘(𝑥 / (abs‘𝑥)))) = (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))) |
| 152 | 147, 151 | oveq12d 6668 |
. . . . . 6
⊢ (𝑥 = (exp‘𝑦) → ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) = ((◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) + (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))) |
| 153 | 152 | eqeq2d 2632 |
. . . . 5
⊢ (𝑥 = (exp‘𝑦) → (𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑦 = ((◡(exp ↾
ℝ)‘(abs‘(exp‘𝑦))) + (i · (◡𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))))) |
| 154 | 145, 153 | syl5ibrcom 237 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑥 = (exp‘𝑦) → 𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 155 | 154 | adantrr 753 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ (ℂ ∖ {0}))) → (𝑥 = (exp‘𝑦) → 𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))))) |
| 156 | 98, 155 | impbid 202 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = ((◡(exp ↾ ℝ)‘(abs‘𝑥)) + (i · (◡𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑥 = (exp‘𝑦))) |
| 157 | 13, 17, 71, 156 | f1o2d 6887 |
1
⊢ (𝜑 → (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0})) |