Proof of Theorem efif1olem4
| Step | Hyp | Ref
| Expression |
| 1 | | efif1olem4.3 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 2 | 1 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ∈ ℝ) |
| 3 | | ax-icn 9995 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 4 | | recn 10026 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
| 5 | | mulcl 10020 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝑤
∈ ℂ) → (i · 𝑤) ∈ ℂ) |
| 6 | 3, 4, 5 | sylancr 695 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ → (i
· 𝑤) ∈
ℂ) |
| 7 | | efcl 14813 |
. . . . . . . 8
⊢ ((i
· 𝑤) ∈ ℂ
→ (exp‘(i · 𝑤)) ∈ ℂ) |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ ℂ) |
| 9 | | absefi 14926 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
(abs‘(exp‘(i · 𝑤))) = 1) |
| 10 | | absf 14077 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
| 11 | | ffn 6045 |
. . . . . . . . 9
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
⊢ abs Fn
ℂ |
| 13 | | fniniseg 6338 |
. . . . . . . 8
⊢ (abs Fn
ℂ → ((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1))) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢
((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1)) |
| 15 | 8, 9, 14 | sylanbrc 698 |
. . . . . 6
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ (◡abs “
{1})) |
| 16 | | efif1o.2 |
. . . . . 6
⊢ 𝐶 = (◡abs “ {1}) |
| 17 | 15, 16 | syl6eleqr 2712 |
. . . . 5
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ 𝐶) |
| 18 | 2, 17 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (exp‘(i · 𝑤)) ∈ 𝐶) |
| 19 | | efif1o.1 |
. . . 4
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
| 20 | 18, 19 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐹:𝐷⟶𝐶) |
| 21 | 1 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐷 ⊆ ℝ) |
| 22 | | simplrl 800 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ 𝐷) |
| 23 | 21, 22 | sseldd 3604 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℝ) |
| 24 | 23 | recnd 10068 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℂ) |
| 25 | | simplrr 801 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ 𝐷) |
| 26 | 21, 25 | sseldd 3604 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℝ) |
| 27 | 26 | recnd 10068 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℂ) |
| 28 | 24, 27 | subcld 10392 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) ∈ ℂ) |
| 29 | | 2re 11090 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 30 | | pire 24210 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
| 31 | 29, 30 | remulcli 10054 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
| 32 | 31 | recni 10052 |
. . . . . . . . . 10
⊢ (2
· π) ∈ ℂ |
| 33 | | 2pos 11112 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 34 | | pipos 24212 |
. . . . . . . . . . . 12
⊢ 0 <
π |
| 35 | 29, 30, 33, 34 | mulgt0ii 10170 |
. . . . . . . . . . 11
⊢ 0 < (2
· π) |
| 36 | 31, 35 | gt0ne0ii 10564 |
. . . . . . . . . 10
⊢ (2
· π) ≠ 0 |
| 37 | | divcl 10691 |
. . . . . . . . . 10
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
| 38 | 32, 36, 37 | mp3an23 1416 |
. . . . . . . . 9
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
| 39 | 28, 38 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
| 40 | | absdiv 14035 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
| 41 | 32, 36, 40 | mp3an23 1416 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑦) ∈ ℂ → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
| 42 | 28, 41 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
| 43 | | 0re 10040 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 44 | 43, 31, 35 | ltleii 10160 |
. . . . . . . . . . . . 13
⊢ 0 ≤ (2
· π) |
| 45 | | absid 14036 |
. . . . . . . . . . . . 13
⊢ (((2
· π) ∈ ℝ ∧ 0 ≤ (2 · π)) →
(abs‘(2 · π)) = (2 · π)) |
| 46 | 31, 44, 45 | mp2an 708 |
. . . . . . . . . . . 12
⊢
(abs‘(2 · π)) = (2 · π) |
| 47 | 46 | oveq2i 6661 |
. . . . . . . . . . 11
⊢
((abs‘(𝑥
− 𝑦)) / (abs‘(2
· π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π)) |
| 48 | 42, 47 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π))) |
| 49 | | efif1olem4.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) |
| 51 | 32 | mulid1i 10042 |
. . . . . . . . . . . 12
⊢ ((2
· π) · 1) = (2 · π) |
| 52 | 50, 51 | syl6breqr 4695 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1)) |
| 53 | 28 | abscld 14175 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) ∈ ℝ) |
| 54 | | 1re 10039 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
| 55 | 31, 35 | pm3.2i 471 |
. . . . . . . . . . . . 13
⊢ ((2
· π) ∈ ℝ ∧ 0 < (2 · π)) |
| 56 | | ltdivmul 10898 |
. . . . . . . . . . . . 13
⊢
(((abs‘(𝑥
− 𝑦)) ∈ ℝ
∧ 1 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2
· π))) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) |
| 57 | 54, 55, 56 | mp3an23 1416 |
. . . . . . . . . . . 12
⊢
((abs‘(𝑥
− 𝑦)) ∈ ℝ
→ (((abs‘(𝑥
− 𝑦)) / (2 ·
π)) < 1 ↔ (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1))) |
| 58 | 53, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) |
| 59 | 52, 58 | mpbird 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘(𝑥 − 𝑦)) / (2 · π)) <
1) |
| 60 | 48, 59 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) <
1) |
| 61 | 32, 36 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ ((2
· π) ∈ ℂ ∧ (2 · π) ≠ 0) |
| 62 | | ine0 10465 |
. . . . . . . . . . . . . . 15
⊢ i ≠
0 |
| 63 | 3, 62 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ (i ∈
ℂ ∧ i ≠ 0) |
| 64 | | divcan5 10727 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
| 65 | 61, 63, 64 | mp3an23 1416 |
. . . . . . . . . . . . 13
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
| 66 | 28, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
| 67 | 3 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → i ∈ ℂ) |
| 68 | 67, 24, 27 | subdid 10486 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) = ((i · 𝑥) − (i · 𝑦))) |
| 69 | 68 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = (exp‘((i · 𝑥) − (i · 𝑦)))) |
| 70 | | mulcl 10020 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) |
| 71 | 3, 24, 70 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑥) ∈ ℂ) |
| 72 | | mulcl 10020 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑦
∈ ℂ) → (i · 𝑦) ∈ ℂ) |
| 73 | 3, 27, 72 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑦) ∈ ℂ) |
| 74 | | efsub 14830 |
. . . . . . . . . . . . . . 15
⊢ (((i
· 𝑥) ∈ ℂ
∧ (i · 𝑦) ∈
ℂ) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦)))) |
| 75 | 71, 73, 74 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i ·
𝑥)) / (exp‘(i
· 𝑦)))) |
| 76 | | efcl 14813 |
. . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ∈ ℂ) |
| 77 | 73, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ∈
ℂ) |
| 78 | | efne0 14827 |
. . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ≠ 0) |
| 79 | 73, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ≠ 0) |
| 80 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 81 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (i · 𝑤) = (i · 𝑥)) |
| 82 | 81 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑥))) |
| 83 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑥)) ∈ V |
| 84 | 82, 19, 83 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (exp‘(i · 𝑥))) |
| 85 | 22, 84 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (exp‘(i · 𝑥))) |
| 86 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) |
| 87 | 86 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑦 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑦))) |
| 88 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑦)) ∈ V |
| 89 | 87, 19, 88 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
| 90 | 25, 89 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
| 91 | 80, 85, 90 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑥)) = (exp‘(i ·
𝑦))) |
| 92 | 77, 79, 91 | diveq1bd 10849 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦))) = 1) |
| 93 | 69, 75, 92 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = 1) |
| 94 | | mulcl 10020 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (𝑥
− 𝑦) ∈ ℂ)
→ (i · (𝑥
− 𝑦)) ∈
ℂ) |
| 95 | 3, 28, 94 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) ∈ ℂ) |
| 96 | | efeq1 24275 |
. . . . . . . . . . . . . 14
⊢ ((i
· (𝑥 − 𝑦)) ∈ ℂ →
((exp‘(i · (𝑥
− 𝑦))) = 1 ↔ ((i
· (𝑥 − 𝑦)) / (i · (2 ·
π))) ∈ ℤ)) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · (𝑥 − 𝑦))) = 1 ↔ ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
| 98 | 93, 97 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ) |
| 99 | 66, 98 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℤ) |
| 100 | | nn0abscl 14052 |
. . . . . . . . . . 11
⊢ (((𝑥 − 𝑦) / (2 · π)) ∈ ℤ →
(abs‘((𝑥 −
𝑦) / (2 · π)))
∈ ℕ0) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) ∈
ℕ0) |
| 102 | | nn0lt10b 11439 |
. . . . . . . . . 10
⊢
((abs‘((𝑥
− 𝑦) / (2 ·
π))) ∈ ℕ0 → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) |
| 104 | 60, 103 | mpbid 222 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = 0) |
| 105 | 39, 104 | abs00d 14185 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) = 0) |
| 106 | | diveq0 10695 |
. . . . . . . . 9
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
| 107 | 32, 36, 106 | mp3an23 1416 |
. . . . . . . 8
⊢ ((𝑥 − 𝑦) ∈ ℂ → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
| 108 | 28, 107 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
| 109 | 105, 108 | mpbid 222 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) = 0) |
| 110 | 24, 27, 109 | subeq0d 10400 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
| 111 | 110 | ex 450 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 112 | 111 | ralrimivva 2971 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 113 | | dff13 6512 |
. . 3
⊢ (𝐹:𝐷–1-1→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 114 | 20, 112, 113 | sylanbrc 698 |
. 2
⊢ (𝜑 → 𝐹:𝐷–1-1→𝐶) |
| 115 | | neghalfpire 24217 |
. . . . . . . . 9
⊢ -(π /
2) ∈ ℝ |
| 116 | | halfpire 24216 |
. . . . . . . . 9
⊢ (π /
2) ∈ ℝ |
| 117 | | iccssre 12255 |
. . . . . . . . 9
⊢ ((-(π
/ 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π /
2)[,](π / 2)) ⊆ ℝ) |
| 118 | 115, 116,
117 | mp2an 708 |
. . . . . . . 8
⊢ (-(π /
2)[,](π / 2)) ⊆ ℝ |
| 119 | 19, 16 | efif1olem3 24290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈
(-1[,]1)) |
| 120 | | resinf1o 24282 |
. . . . . . . . . . . 12
⊢ (sin
↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) |
| 121 | | efif1olem4.6 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) |
| 122 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ (𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) → (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))) |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)) |
| 124 | 120, 123 | mpbir 221 |
. . . . . . . . . . 11
⊢ 𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) |
| 125 | | f1ocnv 6149 |
. . . . . . . . . . 11
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) → ◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2))) |
| 126 | | f1of 6137 |
. . . . . . . . . . 11
⊢ (◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)) → ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2))) |
| 127 | 124, 125,
126 | mp2b 10 |
. . . . . . . . . 10
⊢ ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2)) |
| 128 | 127 | ffvelrni 6358 |
. . . . . . . . 9
⊢
((ℑ‘(√‘𝑥)) ∈ (-1[,]1) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) |
| 129 | 119, 128 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) |
| 130 | 118, 129 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℝ) |
| 131 | | remulcl 10021 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ) → (2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
| 132 | 29, 130, 131 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
| 133 | | efif1olem4.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
| 134 | 133 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
| 135 | 134 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
| 136 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (𝑧 − 𝑦) = ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) |
| 137 | 136 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → ((𝑧 − 𝑦) / (2 · π)) = (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
| 138 | 137 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
(((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
| 139 | 138 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
| 140 | 139 | rspcv 3305 |
. . . . . 6
⊢ ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ →
(∀𝑧 ∈ ℝ
∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ →
∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
| 141 | 132, 135,
140 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ) |
| 142 | | oveq1 6657 |
. . . . . . . 8
⊢
((exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦)))) |
| 143 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → i ∈ ℂ) |
| 144 | 132 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
| 145 | 144 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
| 146 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝐷 ⊆ ℝ) |
| 147 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
| 148 | 146, 147 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℝ) |
| 149 | 148 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℂ) |
| 150 | 143, 145,
149 | subdid 10486 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) = ((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦))) |
| 151 | 150 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦))) |
| 152 | | mulcl 10020 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) |
| 153 | 3, 145, 152 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) |
| 154 | 3, 149, 72 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · 𝑦) ∈ ℂ) |
| 155 | 153, 154 | npcand 10396 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)) = (i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
| 156 | 151, 155 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))))) |
| 157 | 156 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
| 158 | 145, 149 | subcld 10392 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) |
| 159 | | mulcl 10020 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) → (i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) |
| 160 | 3, 158, 159 | sylancr 695 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) |
| 161 | | efadd 14824 |
. . . . . . . . . . 11
⊢ (((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) →
(exp‘((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) |
| 162 | 160, 154,
161 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) |
| 163 | 130 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℂ) |
| 164 | | 2cn 11091 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℂ |
| 165 | | mul12 10202 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 2 ∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
| 166 | 3, 164, 165 | mp3an12 1414 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
| 167 | 163, 166 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
| 168 | 167 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = (exp‘(2 ·
(i · (◡𝑆‘(ℑ‘(√‘𝑥))))))) |
| 169 | | mulcl 10020 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
| 170 | 3, 163, 169 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
| 171 | | 2z 11409 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
| 172 | | efexp 14831 |
. . . . . . . . . . . . . 14
⊢ (((i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ ∧ 2
∈ ℤ) → (exp‘(2 · (i · (◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
| 173 | 170, 171,
172 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
| 174 | 168, 173 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
| 175 | 130 | recoscld 14874 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
| 176 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 177 | 176, 16 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
| 178 | | fniniseg 6338 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (abs Fn
ℂ → (𝑥 ∈
(◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧
(abs‘𝑥) =
1))) |
| 179 | 12, 178 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 180 | 177, 179 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 181 | 180 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
| 182 | 181 | sqrtcld 14176 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
| 183 | 182 | recld 13934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℝ) |
| 184 | | cosq14ge0 24263 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2)) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
| 185 | 129, 184 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
| 186 | 181 | sqrtrege0d 14177 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤
(ℜ‘(√‘𝑥))) |
| 187 | | sincossq 14906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) |
| 188 | 163, 187 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) |
| 189 | 181 | sqsqrtd 14178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
| 190 | 189 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
| 191 | | 2nn0 11309 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℕ0 |
| 192 | | absexp 14044 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((√‘𝑥)
∈ ℂ ∧ 2 ∈ ℕ0) →
(abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
| 193 | 182, 191,
192 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) =
((abs‘(√‘𝑥))↑2)) |
| 194 | 180 | simprd 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
| 195 | 190, 193,
194 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
| 196 | 182 | absvalsq2d 14182 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) |
| 197 | 188, 195,
196 | 3eqtr2d 2662 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) |
| 198 | 121 | fveq1i 6192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = ((sin ↾ (-(π /
2)[,](π / 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) |
| 199 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
| 200 | 129, 199 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin ↾ (-(π / 2)[,](π
/ 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
| 201 | 198, 200 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
| 202 | | f1ocnvfv2 6533 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ∧
(ℑ‘(√‘𝑥)) ∈ (-1[,]1)) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
| 203 | 124, 119,
202 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
| 204 | 201, 203 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
| 205 | 204 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℑ‘(√‘𝑥))↑2)) |
| 206 | 197, 205 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2))) |
| 207 | 163 | sincld 14860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
| 208 | 207 | sqcld 13006 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) |
| 209 | 163 | coscld 14861 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
| 210 | 209 | sqcld 13006 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) |
| 211 | 208, 210 | pncan2d 10394 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) |
| 212 | 183 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℂ) |
| 213 | 212 | sqcld 13006 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((ℜ‘(√‘𝑥))↑2) ∈
ℂ) |
| 214 | 205, 208 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((ℑ‘(√‘𝑥))↑2) ∈ ℂ) |
| 215 | 213, 214 | pncand 10393 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2)) =
((ℜ‘(√‘𝑥))↑2)) |
| 216 | 206, 211,
215 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℜ‘(√‘𝑥))↑2)) |
| 217 | 175, 183,
185, 186, 216 | sq11d 13045 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℜ‘(√‘𝑥))) |
| 218 | 204 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) = (i ·
(ℑ‘(√‘𝑥)))) |
| 219 | 217, 218 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))))) =
((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) |
| 220 | | efival 14882 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
| 221 | 163, 220 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
| 222 | 182 | replimd 13937 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) = ((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) |
| 223 | 219, 221,
222 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (√‘𝑥)) |
| 224 | 223 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥)))))↑2) =
((√‘𝑥)↑2)) |
| 225 | 174, 224,
189 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) |
| 226 | 225 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) |
| 227 | 157, 162,
226 | 3eqtr3d 2664 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = 𝑥) |
| 228 | 154, 76 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · 𝑦)) ∈
ℂ) |
| 229 | 228 | mulid2d 10058 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (1 · (exp‘(i ·
𝑦))) = (exp‘(i
· 𝑦))) |
| 230 | 227, 229 | eqeq12d 2637 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦))) ↔ 𝑥 = (exp‘(i · 𝑦)))) |
| 231 | 142, 230 | syl5ib 234 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → 𝑥 = (exp‘(i · 𝑦)))) |
| 232 | | efeq1 24275 |
. . . . . . . . 9
⊢ ((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ → ((exp‘(i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
| 233 | 160, 232 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
| 234 | | divcan5 10727 |
. . . . . . . . . . 11
⊢ ((((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
| 235 | 61, 63, 234 | mp3an23 1416 |
. . . . . . . . . 10
⊢ (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ → ((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
| 236 | 158, 235 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
| 237 | 236 | eleq1d 2686 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ ↔ (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
| 238 | 233, 237 | bitr2d 269 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ ↔
(exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1)) |
| 239 | 89 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
| 240 | 239 | eqeq2d 2632 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝑥 = (𝐹‘𝑦) ↔ 𝑥 = (exp‘(i · 𝑦)))) |
| 241 | 231, 238,
240 | 3imtr4d 283 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
𝑥 = (𝐹‘𝑦))) |
| 242 | 241 | reximdva 3017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) |
| 243 | 141, 242 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) |
| 244 | 243 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) |
| 245 | | dffo3 6374 |
. . 3
⊢ (𝐹:𝐷–onto→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) |
| 246 | 20, 244, 245 | sylanbrc 698 |
. 2
⊢ (𝜑 → 𝐹:𝐷–onto→𝐶) |
| 247 | | df-f1o 5895 |
. 2
⊢ (𝐹:𝐷–1-1-onto→𝐶 ↔ (𝐹:𝐷–1-1→𝐶 ∧ 𝐹:𝐷–onto→𝐶)) |
| 248 | 114, 246,
247 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) |