Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem69 Structured version   Visualization version   Unicode version

Theorem fourierdlem69 40392
Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem69.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem69.m  |-  ( ph  ->  M  e.  NN )
fourierdlem69.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem69.f  |-  ( ph  ->  F : ( A [,] B ) --> CC )
fourierdlem69.fcn  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
fourierdlem69.r  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
fourierdlem69.l  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
Assertion
Ref Expression
fourierdlem69  |-  ( ph  ->  F  e.  L^1 )
Distinct variable groups:    A, i, m, p    B, i, m, p    i, F    i, M, m, p    Q, i, p    ph, i
Allowed substitution hints:    ph( m, p)    P( i, m, p)    Q( m)    R( i, m, p)    F( m, p)    L( i, m, p)

Proof of Theorem fourierdlem69
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fourierdlem69.f . . . 4  |-  ( ph  ->  F : ( A [,] B ) --> CC )
2 fourierdlem69.q . . . . . . . . . 10  |-  ( ph  ->  Q  e.  ( P `
 M ) )
3 fourierdlem69.m . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
4 fourierdlem69.p . . . . . . . . . . . 12  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
54fourierdlem2 40326 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
63, 5syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
72, 6mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
87simprd 479 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q `
 0 )  =  A  /\  ( Q `
 M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) )
98simpld 475 . . . . . . 7  |-  ( ph  ->  ( ( Q ` 
0 )  =  A  /\  ( Q `  M )  =  B ) )
109simpld 475 . . . . . 6  |-  ( ph  ->  ( Q `  0
)  =  A )
119simprd 479 . . . . . 6  |-  ( ph  ->  ( Q `  M
)  =  B )
1210, 11oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( Q ` 
0 ) [,] ( Q `  M )
)  =  ( A [,] B ) )
1312feq2d 6031 . . . 4  |-  ( ph  ->  ( F : ( ( Q `  0
) [,] ( Q `
 M ) ) --> CC  <->  F : ( A [,] B ) --> CC ) )
141, 13mpbird 247 . . 3  |-  ( ph  ->  F : ( ( Q `  0 ) [,] ( Q `  M ) ) --> CC )
1514feqmptd 6249 . 2  |-  ( ph  ->  F  =  ( x  e.  ( ( Q `
 0 ) [,] ( Q `  M
) )  |->  ( F `
 x ) ) )
16 nfv 1843 . . 3  |-  F/ x ph
17 0zd 11389 . . 3  |-  ( ph  ->  0  e.  ZZ )
18 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
19 1e0p1 11552 . . . . . 6  |-  1  =  ( 0  +  1 )
2019fveq2i 6194 . . . . 5  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  ( 0  +  1 ) )
2118, 20eqtri 2644 . . . 4  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
223, 21syl6eleq 2711 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  ( 0  +  1 ) ) )
237simpld 475 . . . . 5  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
24 elmapi 7879 . . . . 5  |-  ( Q  e.  ( RR  ^m  ( 0 ... M
) )  ->  Q : ( 0 ... M ) --> RR )
2523, 24syl 17 . . . 4  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
2625ffvelrnda 6359 . . 3  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  i )  e.  RR )
278simprd 479 . . . 4  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
2827r19.21bi 2932 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
291adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  F : ( A [,] B ) --> CC )
30 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )
3110adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  ( Q `  0 )  =  A )
3211adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  ( Q `  M )  =  B )
3331, 32oveq12d 6668 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  (
( Q `  0
) [,] ( Q `
 M ) )  =  ( A [,] B ) )
3430, 33eleqtrd 2703 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  x  e.  ( A [,] B
) )
3529, 34ffvelrnd 6360 . . 3  |-  ( (
ph  /\  x  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  ( F `  x )  e.  CC )
3625adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> RR )
37 elfzofz 12485 . . . . . 6  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ( 0 ... M
) )
3837adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0 ... M ) )
3936, 38ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  e.  RR )
40 fzofzp1 12565 . . . . . 6  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ( 0 ... M
) )
4140adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( i  +  1 )  e.  ( 0 ... M ) )
4236, 41ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  e.  RR )
431adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  F : ( A [,] B ) --> CC )
44 ioossicc 12259 . . . . . . . 8  |-  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  C_  ( ( Q `  i ) [,] ( Q `  ( i  +  1 ) ) )
454, 3, 2fourierdlem11 40335 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) )
4645simp1d 1073 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
4746rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
4847adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  A  e.  RR* )
4945simp2d 1074 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
5049rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
5150adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  B  e.  RR* )
524, 3, 2fourierdlem15 40339 . . . . . . . . . 10  |-  ( ph  ->  Q : ( 0 ... M ) --> ( A [,] B ) )
5352adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> ( A [,] B
) )
54 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0..^ M ) )
5548, 51, 53, 54fourierdlem8 40332 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) [,] ( Q `  (
i  +  1 ) ) )  C_  ( A [,] B ) )
5644, 55syl5ss 3614 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  ( A [,] B ) )
5743, 56feqresmpt 6250 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( x  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) ) )
58 fourierdlem69.fcn . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
5957, 58eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( x  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) )  e.  ( ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) -cn-> CC ) )
60 fourierdlem69.l . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
6157oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =  ( ( x  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
6260, 61eleqtrd 2703 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( x  e.  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) 
|->  ( F `  x
) ) lim CC  ( Q `  ( i  +  1 ) ) ) )
63 fourierdlem69.r . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
6457oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =  ( ( x  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) ) lim CC  ( Q `
 i ) ) )
6563, 64eleqtrd 2703 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( x  e.  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) 
|->  ( F `  x
) ) lim CC  ( Q `  i )
) )
6639, 42, 59, 62, 65iblcncfioo 40194 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( x  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) )  e.  L^1 )
6743adantr 481 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  x  e.  ( ( Q `  i ) [,] ( Q `  ( i  +  1 ) ) ) )  ->  F : ( A [,] B ) --> CC )
6855sselda 3603 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  x  e.  ( ( Q `  i ) [,] ( Q `  ( i  +  1 ) ) ) )  ->  x  e.  ( A [,] B
) )
6967, 68ffvelrnd 6360 . . . 4  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  x  e.  ( ( Q `  i ) [,] ( Q `  ( i  +  1 ) ) ) )  ->  ( F `  x )  e.  CC )
7039, 42, 66, 69ibliooicc 40187 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( x  e.  ( ( Q `  i ) [,] ( Q `  ( i  +  1 ) ) )  |->  ( F `  x ) )  e.  L^1 )
7116, 17, 22, 26, 28, 35, 70iblspltprt 40189 . 2  |-  ( ph  ->  ( x  e.  ( ( Q `  0
) [,] ( Q `
 M ) ) 
|->  ( F `  x
) )  e.  L^1 )
7215, 71eqeltrd 2701 1  |-  ( ph  ->  F  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074   NNcn 11020   ZZ>=cuz 11687   (,)cioo 12175   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   -cn->ccncf 22679   L^1cibl 23386   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630
This theorem is referenced by:  fourierdlem84  40407  fourierdlem88  40411  fourierdlem100  40423  fourierdlem107  40430  fourierdlem111  40434  fourierdlem112  40435
  Copyright terms: Public domain W3C validator