Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   Unicode version

Theorem opnvonmbllem2 40847
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x  |-  ( ph  ->  X  e.  Fin )
opnvonmbllem2.n  |-  S  =  dom  (voln `  X
)
opnvonmbllem2.g  |-  ( ph  ->  G  e.  ( TopOpen `  (ℝ^ `  X ) ) )
opnvonmbl.k  |-  K  =  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  | 
X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }
Assertion
Ref Expression
opnvonmbllem2  |-  ( ph  ->  G  e.  S )
Distinct variable groups:    h, G, i    h, K, i    S, h, i    h, X, i    ph, h, i

Proof of Theorem opnvonmbllem2
Dummy variables  x  k  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  Fin )
2 eqid 2622 . . . . . . . . . . . 12  |-  ( dist `  (ℝ^ `  X )
)  =  ( dist `  (ℝ^ `  X )
)
32rrxmetfi 40507 . . . . . . . . . . 11  |-  ( X  e.  Fin  ->  ( dist `  (ℝ^ `  X
) )  e.  ( Met `  ( RR 
^m  X ) ) )
41, 3syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( dist `  (ℝ^ `  X ) )  e.  ( Met `  ( RR  ^m  X ) ) )
5 metxmet 22139 . . . . . . . . . 10  |-  ( (
dist `  (ℝ^ `  X
) )  e.  ( Met `  ( RR 
^m  X ) )  ->  ( dist `  (ℝ^ `  X ) )  e.  ( *Met `  ( RR  ^m  X ) ) )
64, 5syl 17 . . . . . . . . 9  |-  ( ph  ->  ( dist `  (ℝ^ `  X ) )  e.  ( *Met `  ( RR  ^m  X ) ) )
76adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  G )  ->  ( dist `  (ℝ^ `  X
) )  e.  ( *Met `  ( RR  ^m  X ) ) )
8 opnvonmbllem2.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( TopOpen `  (ℝ^ `  X ) ) )
9 eqid 2622 . . . . . . . . . . . . . 14  |-  (ℝ^ `  X
)  =  (ℝ^ `  X
)
109rrxval 23175 . . . . . . . . . . . . 13  |-  ( X  e.  Fin  ->  (ℝ^ `  X )  =  (toCHil `  (RRfld freeLMod  X ) ) )
111, 10syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  (ℝ^ `  X )  =  (toCHil `  (RRfld freeLMod  X ) ) )
1211fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( TopOpen `  (ℝ^ `  X
) )  =  (
TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) ) )
13 ovex 6678 . . . . . . . . . . . . 13  |-  (RRfld freeLMod  X )  e.  _V
14 eqid 2622 . . . . . . . . . . . . . 14  |-  (toCHil `  (RRfld freeLMod 
X ) )  =  (toCHil `  (RRfld freeLMod  X ) )
15 eqid 2622 . . . . . . . . . . . . . 14  |-  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) )  =  (
dist `  (toCHil `  (RRfld freeLMod  X ) ) )
16 eqid 2622 . . . . . . . . . . . . . 14  |-  ( TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) )  =  ( TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) )
1714, 15, 16tchtopn 23025 . . . . . . . . . . . . 13  |-  ( (RRfld freeLMod  X )  e.  _V  ->  (
TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) )  =  ( MetOpen `  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) ) ) )
1813, 17ax-mp 5 . . . . . . . . . . . 12  |-  ( TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) )  =  ( MetOpen `  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) ) )
1918a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( TopOpen `  (toCHil `  (RRfld freeLMod  X ) ) )  =  ( MetOpen `  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) ) ) )
2011eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ph  ->  (toCHil `  (RRfld freeLMod  X ) )  =  (ℝ^ `  X
) )
2120fveq2d 6195 . . . . . . . . . . . 12  |-  ( ph  ->  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) )  =  ( dist `  (ℝ^ `  X ) ) )
2221fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( MetOpen `  ( dist `  (toCHil `  (RRfld freeLMod  X ) ) ) )  =  ( MetOpen `  ( dist `  (ℝ^ `  X )
) ) )
2312, 19, 223eqtrd 2660 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen `  (ℝ^ `  X
) )  =  (
MetOpen `  ( dist `  (ℝ^ `  X ) ) ) )
248, 23eleqtrd 2703 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( MetOpen `  ( dist `  (ℝ^ `  X
) ) ) )
2524adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  G )  ->  G  e.  ( MetOpen `  ( dist `  (ℝ^ `  X )
) ) )
26 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  G )  ->  x  e.  G )
27 eqid 2622 . . . . . . . . 9  |-  ( MetOpen `  ( dist `  (ℝ^ `  X
) ) )  =  ( MetOpen `  ( dist `  (ℝ^ `  X )
) )
2827mopni2 22298 . . . . . . . 8  |-  ( ( ( dist `  (ℝ^ `  X ) )  e.  ( *Met `  ( RR  ^m  X ) )  /\  G  e.  ( MetOpen `  ( dist `  (ℝ^ `  X )
) )  /\  x  e.  G )  ->  E. e  e.  RR+  ( x (
ball `  ( dist `  (ℝ^ `  X )
) ) e ) 
C_  G )
297, 25, 26, 28syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  G )  ->  E. e  e.  RR+  ( x (
ball `  ( dist `  (ℝ^ `  X )
) ) e ) 
C_  G )
301ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+ )  ->  X  e.  Fin )
31 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen `  (ℝ^ `  X ) )  =  ( TopOpen `  (ℝ^ `  X ) )
3231rrxtoponfi 40511 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  Fin  ->  ( TopOpen
`  (ℝ^ `  X )
)  e.  (TopOn `  ( RR  ^m  X ) ) )
331, 32syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( TopOpen `  (ℝ^ `  X
) )  e.  (TopOn `  ( RR  ^m  X
) ) )
34 toponss 20731 . . . . . . . . . . . . . . . 16  |-  ( ( ( TopOpen `  (ℝ^ `  X
) )  e.  (TopOn `  ( RR  ^m  X
) )  /\  G  e.  ( TopOpen `  (ℝ^ `  X
) ) )  ->  G  C_  ( RR  ^m  X ) )
3533, 8, 34syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  C_  ( RR  ^m  X ) )
3635adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  G )  ->  G  C_  ( RR  ^m  X
) )
3736, 26sseldd 3604 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  G )  ->  x  e.  ( RR  ^m  X
) )
3837adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+ )  ->  x  e.  ( RR  ^m  X
) )
39 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+ )  ->  e  e.  RR+ )
4030, 38, 39hoiqssbl 40839 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+ )  ->  E. c  e.  ( QQ  ^m  X
) E. d  e.  ( QQ  ^m  X
) ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )
41403adant3 1081 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+  /\  ( x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  ->  E. c  e.  ( QQ  ^m  X ) E. d  e.  ( QQ  ^m  X ) ( x  e.  X_ i  e.  X  (
( c `  i
) [,) ( d `
 i ) )  /\  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  C_  ( x
( ball `  ( dist `  (ℝ^ `  X )
) ) e ) ) )
42 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ i ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )
43 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ i ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )
44 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ i
x
45 nfixp1 7928 . . . . . . . . . . . . . . . . . 18  |-  F/_ i X_ i  e.  X  ( ( c `  i
) [,) ( d `
 i ) )
4644, 45nfel 2777 . . . . . . . . . . . . . . . . 17  |-  F/ i  x  e.  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )
47 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ i
( x ( ball `  ( dist `  (ℝ^ `  X ) ) ) e )
4845, 47nfss 3596 . . . . . . . . . . . . . . . . 17  |-  F/ i
X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  C_  ( x
( ball `  ( dist `  (ℝ^ `  X )
) ) e )
4946, 48nfan 1828 . . . . . . . . . . . . . . . 16  |-  F/ i ( x  e.  X_ i  e.  X  (
( c `  i
) [,) ( d `
 i ) )  /\  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  C_  ( x
( ball `  ( dist `  (ℝ^ `  X )
) ) e ) )
5042, 43, 49nf3an 1831 . . . . . . . . . . . . . . 15  |-  F/ i ( ( ph  /\  ( x ( ball `  ( dist `  (ℝ^ `  X ) ) ) e )  C_  G
)  /\  ( c  e.  ( QQ  ^m  X
)  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )
511adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x
( ball `  ( dist `  (ℝ^ `  X )
) ) e ) 
C_  G )  ->  X  e.  Fin )
52513ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  ->  X  e.  Fin )
53 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  ( QQ  ^m  X )  ->  c : X --> QQ )
5453adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( c  e.  ( QQ 
^m  X )  /\  d  e.  ( QQ  ^m  X ) )  -> 
c : X --> QQ )
55543ad2ant2 1083 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  -> 
c : X --> QQ )
56 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( QQ  ^m  X )  ->  d : X --> QQ )
5756adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( c  e.  ( QQ 
^m  X )  /\  d  e.  ( QQ  ^m  X ) )  -> 
d : X --> QQ )
58573ad2ant2 1083 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  -> 
d : X --> QQ )
59 simp3r 1090 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  ->  X_ i  e.  X  ( ( c `  i
) [,) ( d `
 i ) ) 
C_  ( x (
ball `  ( dist `  (ℝ^ `  X )
) ) e ) )
60 simp1r 1086 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  -> 
( x ( ball `  ( dist `  (ℝ^ `  X ) ) ) e )  C_  G
)
61 simp3l 1089 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  ->  x  e.  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) ) )
62 opnvonmbl.k . . . . . . . . . . . . . . 15  |-  K  =  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  | 
X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }
63 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( i  e.  X  |->  <. (
c `  i ) ,  ( d `  i ) >. )  =  ( i  e.  X  |->  <. ( c `  i ) ,  ( d `  i )
>. )
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 40846 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  /\  ( c  e.  ( QQ  ^m  X )  /\  d  e.  ( QQ  ^m  X ) )  /\  ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) ) )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,) 
o.  h ) `  i ) )
65643exp 1264 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x
( ball `  ( dist `  (ℝ^ `  X )
) ) e ) 
C_  G )  -> 
( ( c  e.  ( QQ  ^m  X
)  /\  d  e.  ( QQ  ^m  X ) )  ->  ( (
x  e.  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  /\  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
) ) )
6665adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  G )  /\  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  ->  ( ( c  e.  ( QQ  ^m  X
)  /\  d  e.  ( QQ  ^m  X ) )  ->  ( (
x  e.  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  /\  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
) ) )
67663adant2 1080 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+  /\  ( x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  ->  ( ( c  e.  ( QQ  ^m  X
)  /\  d  e.  ( QQ  ^m  X ) )  ->  ( (
x  e.  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  /\  X_ i  e.  X  ( (
c `  i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
) ) )
6867rexlimdvv 3037 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+  /\  ( x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  ->  ( E. c  e.  ( QQ  ^m  X
) E. d  e.  ( QQ  ^m  X
) ( x  e.  X_ i  e.  X  ( ( c `  i ) [,) (
d `  i )
)  /\  X_ i  e.  X  ( ( c `
 i ) [,) ( d `  i
) )  C_  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e ) )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
) )
6941, 68mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  G )  /\  e  e.  RR+  /\  ( x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,) 
o.  h ) `  i ) )
70693exp 1264 . . . . . . . 8  |-  ( (
ph  /\  x  e.  G )  ->  (
e  e.  RR+  ->  ( ( x ( ball `  ( dist `  (ℝ^ `  X ) ) ) e )  C_  G  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,) 
o.  h ) `  i ) ) ) )
7170rexlimdv 3030 . . . . . . 7  |-  ( (
ph  /\  x  e.  G )  ->  ( E. e  e.  RR+  (
x ( ball `  ( dist `  (ℝ^ `  X
) ) ) e )  C_  G  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h ) `  i
) ) )
7229, 71mpd 15 . . . . . 6  |-  ( (
ph  /\  x  e.  G )  ->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
)
73 eliun 4524 . . . . . 6  |-  ( x  e.  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  <->  E. h  e.  K  x  e.  X_ i  e.  X  ( ( [,) 
o.  h ) `  i ) )
7472, 73sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  G )  ->  x  e.  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h
) `  i )
)
7574ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  G  x  e.  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h ) `  i
) )
76 dfss3 3592 . . . 4  |-  ( G 
C_  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  <->  A. x  e.  G  x  e.  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h ) `  i
) )
7775, 76sylibr 224 . . 3  |-  ( ph  ->  G  C_  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h ) `  i
) )
7862eleq2i 2693 . . . . . . . . 9  |-  ( h  e.  K  <->  h  e.  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  | 
X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }
)
7978biimpi 206 . . . . . . . 8  |-  ( h  e.  K  ->  h  e.  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  | 
X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }
)
8079adantl 482 . . . . . . 7  |-  ( (
ph  /\  h  e.  K )  ->  h  e.  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  | 
X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }
)
81 rabid 3116 . . . . . . 7  |-  ( h  e.  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  |  X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }  <->  ( h  e.  ( ( QQ  X.  QQ )  ^m  X )  /\  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  C_  G ) )
8280, 81sylib 208 . . . . . 6  |-  ( (
ph  /\  h  e.  K )  ->  (
h  e.  ( ( QQ  X.  QQ )  ^m  X )  /\  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  C_  G ) )
8382simprd 479 . . . . 5  |-  ( (
ph  /\  h  e.  K )  ->  X_ i  e.  X  ( ( [,)  o.  h ) `  i )  C_  G
)
8483ralrimiva 2966 . . . 4  |-  ( ph  ->  A. h  e.  K  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  C_  G )
85 iunss 4561 . . . 4  |-  ( U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h ) `  i )  C_  G  <->  A. h  e.  K  X_ i  e.  X  (
( [,)  o.  h
) `  i )  C_  G )
8684, 85sylibr 224 . . 3  |-  ( ph  ->  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  C_  G )
8777, 86eqssd 3620 . 2  |-  ( ph  ->  G  =  U_ h  e.  K  X_ i  e.  X  ( ( [,) 
o.  h ) `  i ) )
88 opnvonmbllem2.n . . . 4  |-  S  =  dom  (voln `  X
)
891, 88dmovnsal 40826 . . 3  |-  ( ph  ->  S  e. SAlg )
90 ssrab2 3687 . . . . . 6  |-  { h  e.  ( ( QQ  X.  QQ )  ^m  X )  |  X_ i  e.  X  ( ( [,)  o.  h ) `  i
)  C_  G }  C_  ( ( QQ  X.  QQ )  ^m  X )
9162, 90eqsstri 3635 . . . . 5  |-  K  C_  ( ( QQ  X.  QQ )  ^m  X )
9291a1i 11 . . . 4  |-  ( ph  ->  K  C_  ( ( QQ  X.  QQ )  ^m  X ) )
93 qct 39578 . . . . . . 7  |-  QQ  ~<_  om
9493a1i 11 . . . . . 6  |-  ( ph  ->  QQ  ~<_  om )
95 xpct 8839 . . . . . 6  |-  ( ( QQ  ~<_  om  /\  QQ  ~<_  om )  ->  ( QQ  X.  QQ )  ~<_  om )
9694, 94, 95syl2anc 693 . . . . 5  |-  ( ph  ->  ( QQ  X.  QQ )  ~<_  om )
9796, 1mpct 39393 . . . 4  |-  ( ph  ->  ( ( QQ  X.  QQ )  ^m  X )  ~<_  om )
98 ssct 8041 . . . 4  |-  ( ( K  C_  ( ( QQ  X.  QQ )  ^m  X )  /\  (
( QQ  X.  QQ )  ^m  X )  ~<_  om )  ->  K  ~<_  om )
9992, 97, 98syl2anc 693 . . 3  |-  ( ph  ->  K  ~<_  om )
100 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
101100, 100xpex 6962 . . . . . . . . 9  |-  ( RR 
X.  RR )  e. 
_V
102 qssre 11798 . . . . . . . . . 10  |-  QQ  C_  RR
103 xpss12 5225 . . . . . . . . . 10  |-  ( ( QQ  C_  RR  /\  QQ  C_  RR )  ->  ( QQ  X.  QQ )  C_  ( RR  X.  RR ) )
104102, 102, 103mp2an 708 . . . . . . . . 9  |-  ( QQ 
X.  QQ )  C_  ( RR  X.  RR )
105 mapss 7900 . . . . . . . . 9  |-  ( ( ( RR  X.  RR )  e.  _V  /\  ( QQ  X.  QQ )  C_  ( RR  X.  RR ) )  ->  (
( QQ  X.  QQ )  ^m  X )  C_  ( ( RR  X.  RR )  ^m  X ) )
106101, 104, 105mp2an 708 . . . . . . . 8  |-  ( ( QQ  X.  QQ )  ^m  X )  C_  ( ( RR  X.  RR )  ^m  X )
10791sseli 3599 . . . . . . . 8  |-  ( h  e.  K  ->  h  e.  ( ( QQ  X.  QQ )  ^m  X ) )
108106, 107sseldi 3601 . . . . . . 7  |-  ( h  e.  K  ->  h  e.  ( ( RR  X.  RR )  ^m  X ) )
109 elmapi 7879 . . . . . . 7  |-  ( h  e.  ( ( RR 
X.  RR )  ^m  X )  ->  h : X --> ( RR  X.  RR ) )
110108, 109syl 17 . . . . . 6  |-  ( h  e.  K  ->  h : X --> ( RR  X.  RR ) )
111110adantl 482 . . . . 5  |-  ( (
ph  /\  h  e.  K )  ->  h : X --> ( RR  X.  RR ) )
112 fveq2 6191 . . . . . . 7  |-  ( k  =  i  ->  (
h `  k )  =  ( h `  i ) )
113112fveq2d 6195 . . . . . 6  |-  ( k  =  i  ->  ( 1st `  ( h `  k ) )  =  ( 1st `  (
h `  i )
) )
114113cbvmptv 4750 . . . . 5  |-  ( k  e.  X  |->  ( 1st `  ( h `  k
) ) )  =  ( i  e.  X  |->  ( 1st `  (
h `  i )
) )
115112fveq2d 6195 . . . . . 6  |-  ( k  =  i  ->  ( 2nd `  ( h `  k ) )  =  ( 2nd `  (
h `  i )
) )
116115cbvmptv 4750 . . . . 5  |-  ( k  e.  X  |->  ( 2nd `  ( h `  k
) ) )  =  ( i  e.  X  |->  ( 2nd `  (
h `  i )
) )
117111, 114, 116hoicoto2 40819 . . . 4  |-  ( (
ph  /\  h  e.  K )  ->  X_ i  e.  X  ( ( [,)  o.  h ) `  i )  =  X_ i  e.  X  (
( ( k  e.  X  |->  ( 1st `  (
h `  k )
) ) `  i
) [,) ( ( k  e.  X  |->  ( 2nd `  ( h `
 k ) ) ) `  i ) ) )
1181adantr 481 . . . . 5  |-  ( (
ph  /\  h  e.  K )  ->  X  e.  Fin )
119111ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  h  e.  K )  /\  k  e.  X )  ->  (
h `  k )  e.  ( RR  X.  RR ) )
120 xp1st 7198 . . . . . . 7  |-  ( ( h `  k )  e.  ( RR  X.  RR )  ->  ( 1st `  ( h `  k
) )  e.  RR )
121119, 120syl 17 . . . . . 6  |-  ( ( ( ph  /\  h  e.  K )  /\  k  e.  X )  ->  ( 1st `  ( h `  k ) )  e.  RR )
122 eqid 2622 . . . . . 6  |-  ( k  e.  X  |->  ( 1st `  ( h `  k
) ) )  =  ( k  e.  X  |->  ( 1st `  (
h `  k )
) )
123121, 122fmptd 6385 . . . . 5  |-  ( (
ph  /\  h  e.  K )  ->  (
k  e.  X  |->  ( 1st `  ( h `
 k ) ) ) : X --> RR )
124 xp2nd 7199 . . . . . . 7  |-  ( ( h `  k )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( h `  k
) )  e.  RR )
125119, 124syl 17 . . . . . 6  |-  ( ( ( ph  /\  h  e.  K )  /\  k  e.  X )  ->  ( 2nd `  ( h `  k ) )  e.  RR )
126 eqid 2622 . . . . . 6  |-  ( k  e.  X  |->  ( 2nd `  ( h `  k
) ) )  =  ( k  e.  X  |->  ( 2nd `  (
h `  k )
) )
127125, 126fmptd 6385 . . . . 5  |-  ( (
ph  /\  h  e.  K )  ->  (
k  e.  X  |->  ( 2nd `  ( h `
 k ) ) ) : X --> RR )
128118, 88, 123, 127hoimbl 40845 . . . 4  |-  ( (
ph  /\  h  e.  K )  ->  X_ i  e.  X  ( (
( k  e.  X  |->  ( 1st `  (
h `  k )
) ) `  i
) [,) ( ( k  e.  X  |->  ( 2nd `  ( h `
 k ) ) ) `  i ) )  e.  S )
129117, 128eqeltrd 2701 . . 3  |-  ( (
ph  /\  h  e.  K )  ->  X_ i  e.  X  ( ( [,)  o.  h ) `  i )  e.  S
)
13089, 99, 129saliuncl 40542 . 2  |-  ( ph  ->  U_ h  e.  K  X_ i  e.  X  ( ( [,)  o.  h
) `  i )  e.  S )
13187, 130eqeltrd 2701 1  |-  ( ph  ->  G  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   <.cop 4183   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908    ~<_ cdom 7953   Fincfn 7955   RRcr 9935   QQcq 11788   RR+crp 11832   [,)cico 12177   distcds 15950   TopOpenctopn 16082   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736  RRfldcrefld 19950   freeLMod cfrlm 20090  TopOnctopon 20715  toCHilctch 22967  ℝ^crrx 23171  volncvoln 40752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cmp 21190  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173  df-ovol 23233  df-vol 23234  df-salg 40529  df-sumge0 40580  df-mea 40667  df-ome 40704  df-caragen 40706  df-ovoln 40751  df-voln 40753
This theorem is referenced by:  opnvonmbl  40848
  Copyright terms: Public domain W3C validator