Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmygeid Structured version   Visualization version   GIF version

Theorem rmygeid 37531
Description: Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
rmygeid ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁))

Proof of Theorem rmygeid
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑎 = 0 → 𝑎 = 0)
2 oveq2 6658 . . . . 5 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
31, 2breq12d 4666 . . . 4 (𝑎 = 0 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0)))
43imbi2d 330 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))))
5 id 22 . . . . 5 (𝑎 = 𝑏𝑎 = 𝑏)
6 oveq2 6658 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
75, 6breq12d 4666 . . . 4 (𝑎 = 𝑏 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑏 ≤ (𝐴 Yrm 𝑏)))
87imbi2d 330 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏))))
9 id 22 . . . . 5 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
10 oveq2 6658 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
119, 10breq12d 4666 . . . 4 (𝑎 = (𝑏 + 1) → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
1211imbi2d 330 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
13 id 22 . . . . 5 (𝑎 = 𝑁𝑎 = 𝑁)
14 oveq2 6658 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
1513, 14breq12d 4666 . . . 4 (𝑎 = 𝑁 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑁 ≤ (𝐴 Yrm 𝑁)))
1615imbi2d 330 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁))))
17 0le0 11110 . . . 4 0 ≤ 0
18 rmy0 37494 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1917, 18syl5breqr 4691 . . 3 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 Yrm 0))
20 nn0z 11400 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
21203ad2ant1 1082 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℤ)
2221peano2zd 11485 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℤ)
2322zred 11482 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℝ)
24 simp2 1062 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝐴 ∈ (ℤ‘2))
25 frmy 37479 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 6765 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2724, 21, 26syl2anc 693 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2827peano2zd 11485 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℤ)
2928zred 11482 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℝ)
3025fovcl 6765 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
3124, 22, 30syl2anc 693 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
3231zred 11482 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
33 nn0re 11301 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
34333ad2ant1 1082 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℝ)
3527zred 11482 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℝ)
36 1red 10055 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 1 ∈ ℝ)
37 simp3 1063 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ≤ (𝐴 Yrm 𝑏))
3834, 35, 36, 37leadd1dd 10641 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ ((𝐴 Yrm 𝑏) + 1))
3934ltp1d 10954 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 < (𝑏 + 1))
40 ltrmy 37519 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))))
4124, 21, 22, 40syl3anc 1326 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))))
4239, 41mpbid 222 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))
43 zltp1le 11427 . . . . . . . 8 (((𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
4427, 31, 43syl2anc 693 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))))
4542, 44mpbid 222 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))
4623, 29, 32, 38, 45letrd 10194 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))
47463exp 1264 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝑏 ≤ (𝐴 Yrm 𝑏) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
4847a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))))
494, 8, 12, 16, 19, 48nn0ind 11472 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁)))
5049impcom 446 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  2c2 11070  0cn0 11292  cz 11377  cuz 11687   Yrm crmy 37465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by:  jm2.27a  37572  jm2.27c  37574  expdiophlem1  37588
  Copyright terms: Public domain W3C validator