MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmatgsummon Structured version   Visualization version   Unicode version

Theorem chpscmatgsummon 20650
Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
chp0mat.c  |-  C  =  ( N CharPlyMat  R )
chp0mat.p  |-  P  =  (Poly1 `  R )
chp0mat.a  |-  A  =  ( N Mat  R )
chp0mat.x  |-  X  =  (var1 `  R )
chp0mat.g  |-  G  =  (mulGrp `  P )
chp0mat.m  |-  .^  =  (.g
`  G )
chpscmat.d  |-  D  =  { m  e.  (
Base `  A )  |  E. c  e.  (
Base `  R ) A. i  e.  N  A. j  e.  N  ( i m j )  =  if ( i  =  j ,  c ,  ( 0g
`  R ) ) }
chpscmat.s  |-  S  =  (algSc `  P )
chpscmat.m  |-  .-  =  ( -g `  P )
chpscmatgsum.f  |-  F  =  (.g `  P )
chpscmatgsum.h  |-  H  =  (mulGrp `  R )
chpscmatgsum.e  |-  E  =  (.g `  H )
chpscmatgsum.i  |-  I  =  ( invg `  R )
chpscmatgsum.s  |-  .x.  =  ( .s `  P )
chpscmatgsum.z  |-  Z  =  (.g `  R )
Assertion
Ref Expression
chpscmatgsummon  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( C `  M )  =  ( P  gsumg  ( l  e.  ( 0 ... ( # `  N ) )  |->  ( ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) ) ) )
Distinct variable groups:    i, j, A    i, N, j    P, i, j    R, i, j   
i, X, j    A, c, m    D, n    n, E    n, I    M, c, i, j, m, n    N, c, m, n    P, n    R, c, m, n    S, n    D, l    F, l    I, l    J, l, n    M, l    N, l    P, l    R, l    S, l    X, l    .^ , l
Allowed substitution hints:    A( n, l)    C( i, j, m, n, c, l)    D( i, j, m, c)    P( m, c)    S( i, j, m, c)    .x. ( i, j, m, n, c, l)    E( i, j, m, c, l)    .^ ( i, j, m, n, c)    F( i, j, m, n, c)    G( i, j, m, n, c, l)    H( i, j, m, n, c, l)    I( i, j, m, c)    J( i, j, m, c)    .- ( i, j, m, n, c, l)    X( m, n, c)    Z( i, j, m, n, c, l)

Proof of Theorem chpscmatgsummon
StepHypRef Expression
1 chp0mat.c . . 3  |-  C  =  ( N CharPlyMat  R )
2 chp0mat.p . . 3  |-  P  =  (Poly1 `  R )
3 chp0mat.a . . 3  |-  A  =  ( N Mat  R )
4 chp0mat.x . . 3  |-  X  =  (var1 `  R )
5 chp0mat.g . . 3  |-  G  =  (mulGrp `  P )
6 chp0mat.m . . 3  |-  .^  =  (.g
`  G )
7 chpscmat.d . . 3  |-  D  =  { m  e.  (
Base `  A )  |  E. c  e.  (
Base `  R ) A. i  e.  N  A. j  e.  N  ( i m j )  =  if ( i  =  j ,  c ,  ( 0g
`  R ) ) }
8 chpscmat.s . . 3  |-  S  =  (algSc `  P )
9 chpscmat.m . . 3  |-  .-  =  ( -g `  P )
10 chpscmatgsum.f . . 3  |-  F  =  (.g `  P )
11 chpscmatgsum.h . . 3  |-  H  =  (mulGrp `  R )
12 chpscmatgsum.e . . 3  |-  E  =  (.g `  H )
13 chpscmatgsum.i . . 3  |-  I  =  ( invg `  R )
14 chpscmatgsum.s . . 3  |-  .x.  =  ( .s `  P )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14chpscmatgsumbin 20649 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( C `  M )  =  ( P  gsumg  ( l  e.  ( 0 ... ( # `  N ) )  |->  ( ( ( # `  N
)  _C  l ) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) ) ) ) )
16 crngring 18558 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  e.  Ring )
1716adantl 482 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  R  e.  Ring )
182ply1lmod 19622 . . . . . . . 8  |-  ( R  e.  Ring  ->  P  e. 
LMod )
1917, 18syl 17 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  P  e.  LMod )
2019ad2antrr 762 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  ->  P  e.  LMod )
2111ringmgp 18553 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  H  e. 
Mnd )
2217, 21syl 17 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  H  e.  Mnd )
2322ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  ->  H  e.  Mnd )
24 fznn0sub 12373 . . . . . . . . 9  |-  ( l  e.  ( 0 ... ( # `  N
) )  ->  (
( # `  N )  -  l )  e. 
NN0 )
2524adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( # `  N
)  -  l )  e.  NN0 )
26 ringgrp 18552 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2716, 26syl 17 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  R  e.  Grp )
2827adantl 482 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  R  e.  Grp )
2928adantr 481 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  R  e.  Grp )
30 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) )  ->  J  e.  N )
31 elrabi 3359 . . . . . . . . . . . . . . 15  |-  ( M  e.  { m  e.  ( Base `  A
)  |  E. c  e.  ( Base `  R
) A. i  e.  N  A. j  e.  N  ( i m j )  =  if ( i  =  j ,  c ,  ( 0g `  R ) ) }  ->  M  e.  ( Base `  A
) )
3231, 7eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( M  e.  D  ->  M  e.  ( Base `  A
) )
33323ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) )  ->  M  e.  ( Base `  A ) )
3430, 30, 333jca 1242 . . . . . . . . . . . 12  |-  ( ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) )  -> 
( J  e.  N  /\  J  e.  N  /\  M  e.  ( Base `  A ) ) )
3534adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( J  e.  N  /\  J  e.  N  /\  M  e.  ( Base `  A
) ) )
36 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
373, 36matecl 20231 . . . . . . . . . . 11  |-  ( ( J  e.  N  /\  J  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( J M J )  e.  ( Base `  R ) )
3835, 37syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( J M J )  e.  (
Base `  R )
)
3936, 13grpinvcl 17467 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  ( J M J )  e.  ( Base `  R
) )  ->  (
I `  ( J M J ) )  e.  ( Base `  R
) )
4029, 38, 39syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( I `  ( J M J ) )  e.  (
Base `  R )
)
4140adantr 481 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( I `  ( J M J ) )  e.  ( Base `  R
) )
4211, 36mgpbas 18495 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  H )
4342, 12mulgnn0cl 17558 . . . . . . . 8  |-  ( ( H  e.  Mnd  /\  ( ( # `  N
)  -  l )  e.  NN0  /\  (
I `  ( J M J ) )  e.  ( Base `  R
) )  ->  (
( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  e.  (
Base `  R )
)
4423, 25, 41, 43syl3anc 1326 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( # `  N )  -  l
) E ( I `
 ( J M J ) ) )  e.  ( Base `  R
) )
452ply1sca 19623 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  R  =  (Scalar `  P ) )
4645adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  R  =  (Scalar `  P
) )
4746eqcomd 2628 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
(Scalar `  P )  =  R )
4847fveq2d 6195 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( Base `  (Scalar `  P
) )  =  (
Base `  R )
)
4948ad2antrr 762 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( Base `  (Scalar `  P
) )  =  (
Base `  R )
)
5044, 49eleqtrrd 2704 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( # `  N )  -  l
) E ( I `
 ( J M J ) ) )  e.  ( Base `  (Scalar `  P ) ) )
51 hashcl 13147 . . . . . . . 8  |-  ( N  e.  Fin  ->  ( # `
 N )  e. 
NN0 )
5251ad2antrr 762 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( # `  N
)  e.  NN0 )
53 elfzelz 12342 . . . . . . 7  |-  ( l  e.  ( 0 ... ( # `  N
) )  ->  l  e.  ZZ )
54 bccl 13109 . . . . . . 7  |-  ( ( ( # `  N
)  e.  NN0  /\  l  e.  ZZ )  ->  ( ( # `  N
)  _C  l )  e.  NN0 )
5552, 53, 54syl2an 494 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( # `  N
)  _C  l )  e.  NN0 )
562ply1ring 19618 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  P  e. 
Ring )
575ringmgp 18553 . . . . . . . . . 10  |-  ( P  e.  Ring  ->  G  e. 
Mnd )
5816, 56, 573syl 18 . . . . . . . . 9  |-  ( R  e.  CRing  ->  G  e.  Mnd )
5958adantl 482 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  G  e.  Mnd )
6059ad2antrr 762 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  ->  G  e.  Mnd )
61 elfznn0 12433 . . . . . . . 8  |-  ( l  e.  ( 0 ... ( # `  N
) )  ->  l  e.  NN0 )
6261adantl 482 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
l  e.  NN0 )
63 eqid 2622 . . . . . . . . . 10  |-  ( Base `  P )  =  (
Base `  P )
644, 2, 63vr1cl 19587 . . . . . . . . 9  |-  ( R  e.  Ring  ->  X  e.  ( Base `  P
) )
6517, 64syl 17 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  X  e.  ( Base `  P ) )
6665ad2antrr 762 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  ->  X  e.  ( Base `  P ) )
675, 63mgpbas 18495 . . . . . . . 8  |-  ( Base `  P )  =  (
Base `  G )
6867, 6mulgnn0cl 17558 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  l  e.  NN0  /\  X  e.  ( Base `  P
) )  ->  (
l  .^  X )  e.  ( Base `  P
) )
6960, 62, 66, 68syl3anc 1326 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( l  .^  X
)  e.  ( Base `  P ) )
70 eqid 2622 . . . . . . 7  |-  (Scalar `  P )  =  (Scalar `  P )
71 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
72 eqid 2622 . . . . . . 7  |-  (.g `  (Scalar `  P ) )  =  (.g `  (Scalar `  P
) )
7363, 70, 14, 71, 10, 72lmodvsmmulgdi 18898 . . . . . 6  |-  ( ( P  e.  LMod  /\  (
( ( ( # `  N )  -  l
) E ( I `
 ( J M J ) ) )  e.  ( Base `  (Scalar `  P ) )  /\  ( ( # `  N
)  _C  l )  e.  NN0  /\  (
l  .^  X )  e.  ( Base `  P
) ) )  -> 
( ( ( # `  N )  _C  l
) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) )  =  ( ( ( ( # `  N )  _C  l
) (.g `  (Scalar `  P
) ) ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) )
7420, 50, 55, 69, 73syl13anc 1328 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( # `  N )  _C  l
) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) )  =  ( ( ( ( # `  N )  _C  l
) (.g `  (Scalar `  P
) ) ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) )
75 chpscmatgsum.z . . . . . . . . 9  |-  Z  =  (.g `  R )
7646fveq2d 6195 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
(.g `  R )  =  (.g `  (Scalar `  P
) ) )
7775, 76syl5req 2669 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
(.g `  (Scalar `  P
) )  =  Z )
7877ad2antrr 762 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
(.g `  (Scalar `  P
) )  =  Z )
7978oveqd 6667 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( # `  N )  _C  l
) (.g `  (Scalar `  P
) ) ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  =  ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) ) )
8079oveq1d 6665 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( (
# `  N )  _C  l ) (.g `  (Scalar `  P ) ) ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) )  =  ( ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) )
8174, 80eqtrd 2656 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  /\  l  e.  ( 0 ... ( # `  N
) ) )  -> 
( ( ( # `  N )  _C  l
) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) )  =  ( ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) )
8281mpteq2dva 4744 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( l  e.  ( 0 ... ( # `
 N ) ) 
|->  ( ( ( # `  N )  _C  l
) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) ) )  =  ( l  e.  ( 0 ... ( # `  N ) )  |->  ( ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) ) )
8382oveq2d 6666 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( P  gsumg  ( l  e.  ( 0 ... ( # `  N
) )  |->  ( ( ( # `  N
)  _C  l ) F ( ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) )  .x.  (
l  .^  X )
) ) ) )  =  ( P  gsumg  ( l  e.  ( 0 ... ( # `  N
) )  |->  ( ( ( ( # `  N
)  _C  l ) Z ( ( (
# `  N )  -  l ) E ( I `  ( J M J ) ) ) )  .x.  (
l  .^  X )
) ) ) )
8415, 83eqtrd 2656 1  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( M  e.  D  /\  J  e.  N  /\  A. n  e.  N  ( n M n )  =  ( J M J ) ) )  ->  ( C `  M )  =  ( P  gsumg  ( l  e.  ( 0 ... ( # `  N ) )  |->  ( ( ( ( # `  N )  _C  l
) Z ( ( ( # `  N
)  -  l ) E ( I `  ( J M J ) ) ) )  .x.  ( l  .^  X
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936    - cmin 10266   NN0cn0 11292   ZZcz 11377   ...cfz 12326    _C cbc 13089   #chash 13117   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424  .gcmg 17540  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548   LModclmod 18863  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547   Mat cmat 20213   CharPlyMat cchpmat 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-assa 19312  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mdet 20391  df-mat2pmat 20512  df-chpmat 20632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator