MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnllycmp Structured version   Visualization version   Unicode version

Theorem cnllycmp 22755
Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllycmp.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
cnllycmp  |-  J  e. 𝑛Locally  Comp

Proof of Theorem cnllycmp
Dummy variables  s 
r  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllycmp.1 . . 3  |-  J  =  ( TopOpen ` fld )
21cnfldtop 22587 . 2  |-  J  e. 
Top
3 cnxmet 22576 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41cnfldtopn 22585 . . . . . 6  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
54mopni2 22298 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  J  /\  y  e.  x )  ->  E. r  e.  RR+  ( y ( ball `  ( abs  o.  -  ) ) r ) 
C_  x )
63, 5mp3an1 1411 . . . 4  |-  ( ( x  e.  J  /\  y  e.  x )  ->  E. r  e.  RR+  ( y ( ball `  ( abs  o.  -  ) ) r ) 
C_  x )
72a1i 11 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  J  e.  Top )
83a1i 11 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
9 elssuni 4467 . . . . . . . . . . . 12  |-  ( x  e.  J  ->  x  C_ 
U. J )
109ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  x  C_ 
U. J )
111cnfldtopon 22586 . . . . . . . . . . . 12  |-  J  e.  (TopOn `  CC )
1211toponunii 20721 . . . . . . . . . . 11  |-  CC  =  U. J
1310, 12syl6sseqr 3652 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  x  C_  CC )
14 simplr 792 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  x )
1513, 14sseldd 3604 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  CC )
16 rphalfcl 11858 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
1716ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR+ )
1817rpxrd 11873 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR* )
194blopn 22305 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  J
)
208, 15, 18, 19syl3anc 1326 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  J
)
21 blcntr 22218 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR+ )  ->  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )
228, 15, 17, 21syl3anc 1326 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )
23 opnneip 20923 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) )  e.  J  /\  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )  ->  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) )  e.  ( ( nei `  J ) `
 { y } ) )
247, 20, 22, 23syl3anc 1326 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  ( ( nei `  J
) `  { y } ) )
25 blssm 22223 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  CC )
268, 15, 18, 25syl3anc 1326 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  CC )
2712sscls 20860 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  CC )  -> 
( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )
287, 26, 27syl2anc 693 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )
29 rpxr 11840 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
3029ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  r  e.  RR* )
31 rphalflt 11860 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  < 
r )
3231ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  <  r )
334blsscls 22312 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC )  /\  ( ( r  /  2 )  e. 
RR*  /\  r  e.  RR* 
/\  ( r  / 
2 )  <  r
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  (
y ( ball `  ( abs  o.  -  ) ) r ) )
348, 15, 18, 30, 32, 33syl23anc 1333 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  (
y ( ball `  ( abs  o.  -  ) ) r ) )
35 simprr 796 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
)
3634, 35sstrd 3613 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  x
)
3736, 13sstrd 3613 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC )
3812ssnei2 20920 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) )  e.  ( ( nei `  J ) `  {
y } ) )  /\  ( ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  /\  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC ) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( nei `  J
) `  { y } ) )
397, 24, 28, 37, 38syl22anc 1327 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( nei `  J
) `  { y } ) )
40 vex 3203 . . . . . . . 8  |-  x  e. 
_V
4140elpw2 4828 . . . . . . 7  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ~P x 
<->  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  x
)
4236, 41sylibr 224 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ~P x )
4339, 42elind 3798 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) )
4412clscld 20851 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  CC )  -> 
( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )
)
457, 26, 44syl2anc 693 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )
)
4615abscld 14175 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( abs `  y )  e.  RR )
4717rpred 11872 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR )
4846, 47readdcld 10069 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( abs `  y
)  +  ( r  /  2 ) )  e.  RR )
49 eqid 2622 . . . . . . . . . 10  |-  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  =  {
w  e.  CC  | 
( y ( abs 
o.  -  ) w
)  <_  ( r  /  2 ) }
504, 49blcls 22311 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) } )
518, 15, 18, 50syl3anc 1326 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) } )
52 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  z  e.  CC )
5315adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  y  e.  CC )
5452, 53abs2difd 14196 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  z
)  -  ( abs `  y ) )  <_ 
( abs `  (
z  -  y ) ) )
5552abscld 14175 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  z )  e.  RR )
5646adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  y )  e.  RR )
5755, 56resubcld 10458 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  z
)  -  ( abs `  y ) )  e.  RR )
5852, 53subcld 10392 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
z  -  y )  e.  CC )
5958abscld 14175 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  e.  RR )
6047adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
r  /  2 )  e.  RR )
61 letr 10131 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  z
)  -  ( abs `  y ) )  e.  RR  /\  ( abs `  ( z  -  y
) )  e.  RR  /\  ( r  /  2
)  e.  RR )  ->  ( ( ( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( abs `  (
z  -  y ) )  /\  ( abs `  ( z  -  y
) )  <_  (
r  /  2 ) )  ->  ( ( abs `  z )  -  ( abs `  y ) )  <_  ( r  /  2 ) ) )
6257, 59, 60, 61syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( ( ( abs `  z )  -  ( abs `  y ) )  <_  ( abs `  (
z  -  y ) )  /\  ( abs `  ( z  -  y
) )  <_  (
r  /  2 ) )  ->  ( ( abs `  z )  -  ( abs `  y ) )  <_  ( r  /  2 ) ) )
6354, 62mpand 711 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  (
z  -  y ) )  <_  ( r  /  2 )  -> 
( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( r  /  2
) ) )
6452, 53abssubd 14192 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  =  ( abs `  (
y  -  z ) ) )
65 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
6665cnmetdval 22574 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y ( abs 
o.  -  ) z
)  =  ( abs `  ( y  -  z
) ) )
6715, 66sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
y ( abs  o.  -  ) z )  =  ( abs `  (
y  -  z ) ) )
6864, 67eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  =  ( y ( abs 
o.  -  ) z
) )
6968breq1d 4663 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  (
z  -  y ) )  <_  ( r  /  2 )  <->  ( y
( abs  o.  -  )
z )  <_  (
r  /  2 ) ) )
7055, 56, 60lesubadd2d 10626 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( r  /  2
)  <->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7163, 69, 703imtr3d 282 . . . . . . . . . 10  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( y ( abs 
o.  -  ) z
)  <_  ( r  /  2 )  -> 
( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7271ralrimiva 2966 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  CC  ( ( y ( abs  o.  -  ) z )  <_ 
( r  /  2
)  ->  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
73 oveq2 6658 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
y ( abs  o.  -  ) w )  =  ( y ( abs  o.  -  )
z ) )
7473breq1d 4663 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( y ( abs 
o.  -  ) w
)  <_  ( r  /  2 )  <->  ( y
( abs  o.  -  )
z )  <_  (
r  /  2 ) ) )
7574ralrab 3368 . . . . . . . . 9  |-  ( A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) )  <->  A. z  e.  CC  ( ( y ( abs  o.  -  )
z )  <_  (
r  /  2 )  ->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7672, 75sylibr 224 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  )
w )  <_  (
r  /  2 ) }  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) )
77 ssralv 3666 . . . . . . . 8  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ->  ( A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) )  ->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
7851, 76, 77sylc 65 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) )
79 breq2 4657 . . . . . . . . 9  |-  ( s  =  ( ( abs `  y )  +  ( r  /  2 ) )  ->  ( ( abs `  z )  <_ 
s  <->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
8079ralbidv 2986 . . . . . . . 8  |-  ( s  =  ( ( abs `  y )  +  ( r  /  2 ) )  ->  ( A. z  e.  ( ( cls `  J ) `  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) ) ( abs `  z
)  <_  s  <->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
8180rspcev 3309 . . . . . . 7  |-  ( ( ( ( abs `  y
)  +  ( r  /  2 ) )  e.  RR  /\  A. z  e.  ( ( cls `  J ) `  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) ) ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) )  ->  E. s  e.  RR  A. z  e.  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
)
8248, 78, 81syl2anc 693 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  E. s  e.  RR  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
)
83 eqid 2622 . . . . . . . 8  |-  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  =  ( Jt  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )
841, 83cnheibor 22754 . . . . . . 7  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC  ->  ( ( Jt  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp 
<->  ( ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  e.  ( Clsd `  J
)  /\  E. s  e.  RR  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
) ) )
8537, 84syl 17 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( Jt  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )  e.  Comp  <->  ( ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )  /\  E. s  e.  RR  A. z  e.  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
) ) )
8645, 82, 85mpbir2and 957 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp )
87 oveq2 6658 . . . . . . 7  |-  ( u  =  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  -> 
( Jt  u )  =  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ) )
8887eleq1d 2686 . . . . . 6  |-  ( u  =  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  -> 
( ( Jt  u )  e.  Comp  <->  ( Jt  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp ) )
8988rspcev 3309 . . . . 5  |-  ( ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x )  /\  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp )  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp )
9043, 86, 89syl2anc 693 . . . 4  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp )
916, 90rexlimddv 3035 . . 3  |-  ( ( x  e.  J  /\  y  e.  x )  ->  E. u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  Comp )
9291rgen2 2975 . 2  |-  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp
93 isnlly 21272 . 2  |-  ( J  e. 𝑛Locally 
Comp 
<->  ( J  e.  Top  /\ 
A. x  e.  J  A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  Comp )
)
942, 92, 93mpbir2an 955 1  |-  J  e. 𝑛Locally  Comp
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    o. ccom 5118   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   abscabs 13974   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   ballcbl 19733  ℂfldccnfld 19746   Topctop 20698   Clsdccld 20820   clsccl 20822   neicnei 20901   Compccmp 21189  𝑛Locally cnlly 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  rellycmp  22756
  Copyright terms: Public domain W3C validator