| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cos2bnd | Structured version Visualization version Unicode version | ||
| Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos2bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7cn 11104 |
. . . . . 6
| |
| 2 | 9cn 11108 |
. . . . . 6
| |
| 3 | 9re 11107 |
. . . . . . 7
| |
| 4 | 9pos 11122 |
. . . . . . 7
| |
| 5 | 3, 4 | gt0ne0ii 10564 |
. . . . . 6
|
| 6 | divneg 10719 |
. . . . . 6
| |
| 7 | 1, 2, 5, 6 | mp3an 1424 |
. . . . 5
|
| 8 | 2cn 11091 |
. . . . . . 7
| |
| 9 | 2, 5 | pm3.2i 471 |
. . . . . . 7
|
| 10 | divsubdir 10721 |
. . . . . . 7
| |
| 11 | 8, 2, 9, 10 | mp3an 1424 |
. . . . . 6
|
| 12 | 2, 8 | negsubdi2i 10367 |
. . . . . . . 8
|
| 13 | 7p2e9 11172 |
. . . . . . . . . 10
| |
| 14 | 2, 8, 1 | subadd2i 10369 |
. . . . . . . . . 10
|
| 15 | 13, 14 | mpbir 221 |
. . . . . . . . 9
|
| 16 | 15 | negeqi 10274 |
. . . . . . . 8
|
| 17 | 12, 16 | eqtr3i 2646 |
. . . . . . 7
|
| 18 | 17 | oveq1i 6660 |
. . . . . 6
|
| 19 | 11, 18 | eqtr3i 2646 |
. . . . 5
|
| 20 | 2, 5 | dividi 10758 |
. . . . . 6
|
| 21 | 20 | oveq2i 6661 |
. . . . 5
|
| 22 | 7, 19, 21 | 3eqtr2ri 2651 |
. . . 4
|
| 23 | ax-1cn 9994 |
. . . . . . . 8
| |
| 24 | 8, 23, 2, 5 | divassi 10781 |
. . . . . . 7
|
| 25 | 2t1e2 11176 |
. . . . . . . 8
| |
| 26 | 25 | oveq1i 6660 |
. . . . . . 7
|
| 27 | 24, 26 | eqtr3i 2646 |
. . . . . 6
|
| 28 | 3cn 11095 |
. . . . . . . . . 10
| |
| 29 | 3ne0 11115 |
. . . . . . . . . 10
| |
| 30 | 23, 28, 29 | sqdivi 12948 |
. . . . . . . . 9
|
| 31 | sq1 12958 |
. . . . . . . . . 10
| |
| 32 | sq3 12961 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | oveq12i 6662 |
. . . . . . . . 9
|
| 34 | 30, 33 | eqtri 2644 |
. . . . . . . 8
|
| 35 | cos1bnd 14917 |
. . . . . . . . . 10
| |
| 36 | 35 | simpli 474 |
. . . . . . . . 9
|
| 37 | 0le1 10551 |
. . . . . . . . . . 11
| |
| 38 | 3pos 11114 |
. . . . . . . . . . 11
| |
| 39 | 1re 10039 |
. . . . . . . . . . . 12
| |
| 40 | 3re 11094 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | divge0i 10933 |
. . . . . . . . . . 11
|
| 42 | 37, 38, 41 | mp2an 708 |
. . . . . . . . . 10
|
| 43 | 0re 10040 |
. . . . . . . . . . 11
| |
| 44 | recoscl 14871 |
. . . . . . . . . . . 12
| |
| 45 | 39, 44 | ax-mp 5 |
. . . . . . . . . . 11
|
| 46 | 40, 29 | rereccli 10790 |
. . . . . . . . . . . . 13
|
| 47 | 43, 46, 45 | lelttri 10164 |
. . . . . . . . . . . 12
|
| 48 | 42, 36, 47 | mp2an 708 |
. . . . . . . . . . 11
|
| 49 | 43, 45, 48 | ltleii 10160 |
. . . . . . . . . 10
|
| 50 | 46, 45 | lt2sqi 12952 |
. . . . . . . . . 10
|
| 51 | 42, 49, 50 | mp2an 708 |
. . . . . . . . 9
|
| 52 | 36, 51 | mpbi 220 |
. . . . . . . 8
|
| 53 | 34, 52 | eqbrtrri 4676 |
. . . . . . 7
|
| 54 | 2pos 11112 |
. . . . . . . 8
| |
| 55 | 3, 5 | rereccli 10790 |
. . . . . . . . 9
|
| 56 | 45 | resqcli 12949 |
. . . . . . . . 9
|
| 57 | 2re 11090 |
. . . . . . . . 9
| |
| 58 | 55, 56, 57 | ltmul2i 10945 |
. . . . . . . 8
|
| 59 | 54, 58 | ax-mp 5 |
. . . . . . 7
|
| 60 | 53, 59 | mpbi 220 |
. . . . . 6
|
| 61 | 27, 60 | eqbrtrri 4676 |
. . . . 5
|
| 62 | 57, 3, 5 | redivcli 10792 |
. . . . . 6
|
| 63 | 57, 56 | remulcli 10054 |
. . . . . 6
|
| 64 | ltsub1 10524 |
. . . . . 6
| |
| 65 | 62, 63, 39, 64 | mp3an 1424 |
. . . . 5
|
| 66 | 61, 65 | mpbi 220 |
. . . 4
|
| 67 | 22, 66 | eqbrtrri 4676 |
. . 3
|
| 68 | 25 | fveq2i 6194 |
. . . 4
|
| 69 | cos2t 14908 |
. . . . 5
| |
| 70 | 23, 69 | ax-mp 5 |
. . . 4
|
| 71 | 68, 70 | eqtr3i 2646 |
. . 3
|
| 72 | 67, 71 | breqtrri 4680 |
. 2
|
| 73 | 35 | simpri 478 |
. . . . . . . . 9
|
| 74 | 0le2 11111 |
. . . . . . . . . . 11
| |
| 75 | 57, 40 | divge0i 10933 |
. . . . . . . . . . 11
|
| 76 | 74, 38, 75 | mp2an 708 |
. . . . . . . . . 10
|
| 77 | 57, 40, 29 | redivcli 10792 |
. . . . . . . . . . 11
|
| 78 | 45, 77 | lt2sqi 12952 |
. . . . . . . . . 10
|
| 79 | 49, 76, 78 | mp2an 708 |
. . . . . . . . 9
|
| 80 | 73, 79 | mpbi 220 |
. . . . . . . 8
|
| 81 | 8, 28, 29 | sqdivi 12948 |
. . . . . . . . 9
|
| 82 | sq2 12960 |
. . . . . . . . . 10
| |
| 83 | 82, 32 | oveq12i 6662 |
. . . . . . . . 9
|
| 84 | 81, 83 | eqtri 2644 |
. . . . . . . 8
|
| 85 | 80, 84 | breqtri 4678 |
. . . . . . 7
|
| 86 | 4re 11097 |
. . . . . . . . . 10
| |
| 87 | 86, 3, 5 | redivcli 10792 |
. . . . . . . . 9
|
| 88 | 56, 87, 57 | ltmul2i 10945 |
. . . . . . . 8
|
| 89 | 54, 88 | ax-mp 5 |
. . . . . . 7
|
| 90 | 85, 89 | mpbi 220 |
. . . . . 6
|
| 91 | 4cn 11098 |
. . . . . . . 8
| |
| 92 | 8, 91, 2, 5 | divassi 10781 |
. . . . . . 7
|
| 93 | 4t2e8 11181 |
. . . . . . . . 9
| |
| 94 | 91, 8, 93 | mulcomli 10047 |
. . . . . . . 8
|
| 95 | 94 | oveq1i 6660 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr3i 2646 |
. . . . . 6
|
| 97 | 90, 96 | breqtri 4678 |
. . . . 5
|
| 98 | 8re 11105 |
. . . . . . 7
| |
| 99 | 98, 3, 5 | redivcli 10792 |
. . . . . 6
|
| 100 | ltsub1 10524 |
. . . . . 6
| |
| 101 | 63, 99, 39, 100 | mp3an 1424 |
. . . . 5
|
| 102 | 97, 101 | mpbi 220 |
. . . 4
|
| 103 | 20 | oveq2i 6661 |
. . . . 5
|
| 104 | divneg 10719 |
. . . . . . 7
| |
| 105 | 23, 2, 5, 104 | mp3an 1424 |
. . . . . 6
|
| 106 | 8cn 11106 |
. . . . . . . . 9
| |
| 107 | 2, 106 | negsubdi2i 10367 |
. . . . . . . 8
|
| 108 | 8p1e9 11158 |
. . . . . . . . . 10
| |
| 109 | 2, 106, 23, 108 | subaddrii 10370 |
. . . . . . . . 9
|
| 110 | 109 | negeqi 10274 |
. . . . . . . 8
|
| 111 | 107, 110 | eqtr3i 2646 |
. . . . . . 7
|
| 112 | 111 | oveq1i 6660 |
. . . . . 6
|
| 113 | divsubdir 10721 |
. . . . . . 7
| |
| 114 | 106, 2, 9, 113 | mp3an 1424 |
. . . . . 6
|
| 115 | 105, 112, 114 | 3eqtr2ri 2651 |
. . . . 5
|
| 116 | 103, 115 | eqtr3i 2646 |
. . . 4
|
| 117 | 102, 116 | breqtri 4678 |
. . 3
|
| 118 | 71, 117 | eqbrtri 4674 |
. 2
|
| 119 | 72, 118 | pm3.2i 471 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioc 12180 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-sin 14800 df-cos 14801 |
| This theorem is referenced by: sincos2sgn 14924 |
| Copyright terms: Public domain | W3C validator |