MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Visualization version   Unicode version

Theorem dvcnp2 23683
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j  |-  J  =  ( Kt  A )
dvcnp.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvcnp2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)

Proof of Theorem dvcnp2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5319 . . 3  |-  ( B  e.  dom  ( S  _D  F )  -> 
( B  e.  dom  ( S  _D  F
)  <->  E. y  B ( S  _D  F ) y ) )
21ibi 256 . 2  |-  ( B  e.  dom  ( S  _D  F )  ->  E. y  B ( S  _D  F ) y )
3 simpl2 1065 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F : A --> CC )
43ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
5 dvcnp.k . . . . . . . . . . . . . . 15  |-  K  =  ( TopOpen ` fld )
65cnfldtop 22587 . . . . . . . . . . . . . 14  |-  K  e. 
Top
7 simpl1 1064 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  C_  CC )
8 cnex 10017 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
9 ssexg 4804 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
107, 8, 9sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  e.  _V )
11 resttop 20964 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  S  e.  _V )  ->  ( Kt  S )  e.  Top )
126, 10, 11sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  Top )
13 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  S
)
145cnfldtopon 22586 . . . . . . . . . . . . . . . 16  |-  K  e.  (TopOn `  CC )
15 resttopon 20965 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
1614, 7, 15sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  (TopOn `  S
) )
17 toponuni 20719 . . . . . . . . . . . . . . 15  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
1816, 17syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  =  U. ( Kt  S ) )
1913, 18sseqtrd 3641 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  U. ( Kt  S ) )
20 eqid 2622 . . . . . . . . . . . . . 14  |-  U. ( Kt  S )  =  U. ( Kt  S )
2120ntrss2 20861 . . . . . . . . . . . . 13  |-  ( ( ( Kt  S )  e.  Top  /\  A  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  A )  C_  A
)
2212, 19, 21syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( int `  ( Kt  S ) ) `  A )  C_  A
)
23 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Kt  S )  =  ( Kt  S )
24 eqid 2622 . . . . . . . . . . . . . 14  |-  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) ) )
25 simp1 1061 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
26 simp2 1062 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
27 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
2823, 5, 24, 25, 26, 27eldv 23662 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  <->  ( B  e.  ( ( int `  ( Kt  S ) ) `  A )  /\  y  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) ) ) )
2928simprbda 653 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  ( ( int `  ( Kt  S ) ) `  A ) )
3022, 29sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  A
)
313, 30ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  CC )
3231adantr 481 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
334, 32subcld 10392 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( F `  z
)  -  ( F `
 B ) )  e.  CC )
34 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
3534a1i 11 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  CC  C_  CC )
36 txtopon 21394 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
3714, 14, 36mp2an 708 . . . . . . . . . 10  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponunii 20721 . . . . . . . . . . 11  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
3938restid 16094 . . . . . . . . . 10  |-  ( ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) )  ->  ( ( K 
tX  K )t  ( CC 
X.  CC ) )  =  ( K  tX  K ) )
4037, 39ax-mp 5 . . . . . . . . 9  |-  ( ( K  tX  K )t  ( CC  X.  CC ) )  =  ( K 
tX  K )
4140eqcomi 2631 . . . . . . . 8  |-  ( K 
tX  K )  =  ( ( K  tX  K )t  ( CC  X.  CC ) )
4213, 7sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  CC )
433, 42, 30dvlem 23660 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) )  e.  CC )
4442ssdifssd 3748 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( A  \  { B } )  C_  CC )
4544sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  CC )
4642, 30sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  CC )
4746adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  ->  B  e.  CC )
4845, 47subcld 10392 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( z  -  B
)  e.  CC )
4928simplbda 654 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) )
50 limcresi 23649 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) ) lim CC  B )
51 difss 3737 . . . . . . . . . . . . . . 15  |-  ( A 
\  { B }
)  C_  A
52 resmpt 5449 . . . . . . . . . . . . . . 15  |-  ( ( A  \  { B } )  C_  A  ->  ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) )
5453oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  A  |->  ( z  -  B
) )  |`  ( A  \  { B }
) ) lim CC  B
)  =  ( ( z  e.  ( A 
\  { B }
)  |->  ( z  -  B ) ) lim CC  B )
5550, 54sseqtri 3637 . . . . . . . . . . . 12  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) lim CC  B )
5646subidd 10380 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  =  0 )
575subcn 22669 . . . . . . . . . . . . . . . 16  |-  -  e.  ( ( K  tX  K )  Cn  K
)
5857a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  -  e.  ( ( K  tX  K
)  Cn  K ) )
59 cncfmptid 22715 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  z )  e.  ( A
-cn-> CC ) )
6042, 34, 59sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  z )  e.  ( A -cn-> CC ) )
61 cncfmptc 22714 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  B )  e.  ( A
-cn-> CC ) )
6246, 42, 35, 61syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  B )  e.  ( A -cn-> CC ) )
635, 58, 60, 62cncfmpt2f 22717 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( z  -  B ) )  e.  ( A -cn-> CC ) )
64 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
z  -  B )  =  ( B  -  B ) )
6563, 30, 64cnmptlimc 23654 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6656, 65eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6755, 66sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) lim
CC  B ) )
685mulcn 22670 . . . . . . . . . . . 12  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
6925, 26, 27dvcl 23663 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  CC )
70 0cn 10032 . . . . . . . . . . . . 13  |-  0  e.  CC
71 opelxpi 5148 . . . . . . . . . . . . 13  |-  ( ( y  e.  CC  /\  0  e.  CC )  -> 
<. y ,  0 >.  e.  ( CC  X.  CC ) )
7269, 70, 71sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. y ,  0
>.  e.  ( CC  X.  CC ) )
7338cncnpi 21082 . . . . . . . . . . . 12  |-  ( (  x.  e.  ( ( K  tX  K )  Cn  K )  /\  <.
y ,  0 >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. y ,  0 >. )
)
7468, 72, 73sylancr 695 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  x.  e.  ( ( ( K  tX  K )  CnP  K
) `  <. y ,  0 >. ) )
7543, 48, 35, 35, 5, 41, 49, 67, 74limccnp2 23656 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B ) )
7669mul01d 10235 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  =  0 )
773adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  ->  F : A --> CC )
78 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  ( A 
\  { B }
) )
7951, 78sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  A )
8077, 79ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  z
)  e.  CC )
8131adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  B
)  e.  CC )
8280, 81subcld 10392 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  -  ( F `  B )
)  e.  CC )
83 eldifsni 4320 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( A  \  { B } )  -> 
z  =/=  B )
8483adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  =/=  B )
8545, 47, 84subne0d 10401 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( z  -  B
)  =/=  0 )
8682, 48, 85divcan1d 10802 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) )  x.  (
z  -  B ) )  =  ( ( F `  z )  -  ( F `  B ) ) )
8786mpteq2dva 4744 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
8887oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B )  =  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8975, 76, 883eltr3d 2715 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
90 eqid 2622 . . . . . . . . . . . 12  |-  ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  =  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )
9133, 90fmptd 6385 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) ) : A --> CC )
9291limcdif 23640 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  |`  ( A  \  { B } ) ) lim CC  B ) )
93 resmpt 5449 . . . . . . . . . . . 12  |-  ( ( A  \  { B } )  C_  A  ->  ( ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )  |`  ( A  \  { B }
) )  =  ( z  e.  ( A 
\  { B }
)  |->  ( ( F `
 z )  -  ( F `  B ) ) ) )
9451, 93ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  A  |->  ( ( F `  z
)  -  ( F `
 B ) ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( F `  z
)  -  ( F `
 B ) ) )
9594oveq1i 6660 . . . . . . . . . 10  |-  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) )  |`  ( A  \  { B }
) ) lim CC  B
)  =  ( ( z  e.  ( A 
\  { B }
)  |->  ( ( F `
 z )  -  ( F `  B ) ) ) lim CC  B
)
9692, 95syl6eq 2672 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
9789, 96eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
98 cncfmptc 22714 . . . . . . . . . 10  |-  ( ( ( F `  B
)  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )
9931, 42, 35, 98syl3anc 1326 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> CC ) )
100 eqidd 2623 . . . . . . . . 9  |-  ( z  =  B  ->  ( F `  B )  =  ( F `  B ) )
10199, 30, 100cnmptlimc 23654 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( ( z  e.  A  |->  ( F `  B
) ) lim CC  B
) )
1025addcn 22668 . . . . . . . . 9  |-  +  e.  ( ( K  tX  K )  Cn  K
)
103 opelxpi 5148 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  ( F `  B )  e.  CC )  ->  <. 0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )
10470, 31, 103sylancr 695 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. 0 ,  ( F `  B )
>.  e.  ( CC  X.  CC ) )
10538cncnpi 21082 . . . . . . . . 9  |-  ( (  +  e.  ( ( K  tX  K )  Cn  K )  /\  <.
0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. 0 ,  ( F `  B ) >. )
)
106102, 104, 105sylancr 695 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  +  e.  ( ( ( K  tX  K )  CnP  K
) `  <. 0 ,  ( F `  B
) >. ) )
10733, 32, 35, 35, 5, 41, 97, 101, 106limccnp2 23656 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  e.  ( ( z  e.  A  |->  ( ( ( F `
 z )  -  ( F `  B ) )  +  ( F `
 B ) ) ) lim CC  B ) )
10831addid2d 10237 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  =  ( F `  B ) )
1094, 32npcand 10396 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( ( F `  z )  -  ( F `  B )
)  +  ( F `
 B ) )  =  ( F `  z ) )
110109mpteq2dva 4744 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  ( z  e.  A  |->  ( F `  z
) ) )
1113feqmptd 6249 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
112110, 111eqtr4d 2659 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  F )
113112oveq1d 6665 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  +  ( F `  B ) ) ) lim
CC  B )  =  ( F lim CC  B
) )
114107, 108, 1133eltr3d 2715 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( F lim CC  B ) )
115 dvcnp.j . . . . . . . 8  |-  J  =  ( Kt  A )
1165, 115cnplimc 23651 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )
11742, 30, 116syl2anc 693 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
1183, 114, 117mpbir2and 957 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
119118ex 450 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K ) `  B ) ) )
120119exlimdv 1861 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( E. y  B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K
) `  B )
) )
121120imp 445 . 2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  E. y  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K ) `  B ) )
1222, 121sylan2 491 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029    tX ctx 21363   -cn->ccncf 22679   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcn  23684  dvmulbr  23702  dvcobr  23709  fouriersw  40448
  Copyright terms: Public domain W3C validator