Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   Unicode version

Theorem esumlub 30122
Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f  |-  F/ k
ph
esumlub.0  |-  ( ph  ->  A  e.  V )
esumlub.1  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
esumlub.2  |-  ( ph  ->  X  e.  RR* )
esumlub.3  |-  ( ph  ->  X  < Σ* k  e.  A B )
Assertion
Ref Expression
esumlub  |-  ( ph  ->  E. a  e.  ( ~P A  i^i  Fin ) X  < Σ* k  e.  a B )
Distinct variable groups:    k, a, A    B, a    X, a    ph, a
Allowed substitution hints:    ph( k)    B( k)    V( k, a)    X( k)

Proof of Theorem esumlub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4  |-  ( ph  ->  X  < Σ* k  e.  A B )
2 esumlub.f . . . . . . 7  |-  F/ k
ph
3 nfcv 2764 . . . . . . 7  |-  F/_ k A
4 esumlub.0 . . . . . . 7  |-  ( ph  ->  A  e.  V )
5 esumlub.1 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
6 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
72, 3, 4, 5, 6esumval 30108 . . . . . 6  |-  ( ph  -> Σ* k  e.  A B  =  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )
)
87breq2d 4665 . . . . 5  |-  ( ph  ->  ( X  < Σ* k  e.  A B 
<->  X  <  sup ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )
) )
9 iccssxr 12256 . . . . . . . . 9  |-  ( 0 [,] +oo )  C_  RR*
10 xrge0base 29685 . . . . . . . . . 10  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
11 xrge0cmn 19788 . . . . . . . . . . 11  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
1211a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
13 inss2 3834 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
Fin
14 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  ( ~P A  i^i  Fin ) )
1513, 14sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  Fin )
16 nfv 1843 . . . . . . . . . . . 12  |-  F/ k  x  e.  ( ~P A  i^i  Fin )
172, 16nfan 1828 . . . . . . . . . . 11  |-  F/ k ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )
18 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  ph )
19 inss1 3833 . . . . . . . . . . . . . . . . 17  |-  ( ~P A  i^i  Fin )  C_ 
~P A
2019sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
2120ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ~P A )
2221elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  C_  A )
23 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  x )
2422, 23sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  A )
2518, 24, 5syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  B  e.  ( 0 [,] +oo ) )
2625ex 450 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  x  ->  B  e.  ( 0 [,] +oo ) ) )
2717, 26ralrimi 2957 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  A. k  e.  x  B  e.  ( 0 [,] +oo ) )
2810, 12, 15, 27gsummptcl 18366 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e.  ( 0 [,] +oo ) )
299, 28sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
3029ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
31 eqid 2622 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )
3231rnmptss 6392 . . . . . . 7  |-  ( A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  x  |->  B ) )  e. 
RR*  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
3330, 32syl 17 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
34 esumlub.2 . . . . . 6  |-  ( ph  ->  X  e.  RR* )
35 supxrlub 12155 . . . . . 6  |-  ( ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR*  /\  X  e. 
RR* )  ->  ( X  <  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )  <->  E. y  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) X  <  y ) )
3633, 34, 35syl2anc 693 . . . . 5  |-  ( ph  ->  ( X  <  sup ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )  <->  E. y  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) X  <  y ) )
378, 36bitrd 268 . . . 4  |-  ( ph  ->  ( X  < Σ* k  e.  A B 
<->  E. y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) X  <  y ) )
381, 37mpbid 222 . . 3  |-  ( ph  ->  E. y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) X  <  y )
39 ovex 6678 . . . . 5  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
_V
4039a1i 11 . . . 4  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
_V )
41 mpteq1 4737 . . . . . . . 8  |-  ( x  =  a  ->  (
k  e.  x  |->  B )  =  ( k  e.  a  |->  B ) )
4241oveq2d 6666 . . . . . . 7  |-  ( x  =  a  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
4342cbvmptv 4750 . . . . . 6  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( a  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
4443, 39elrnmpti 5376 . . . . 5  |-  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. a  e.  ( ~P A  i^i  Fin )
y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
4544a1i 11 . . . 4  |-  ( ph  ->  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. a  e.  ( ~P A  i^i  Fin )
y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) ) )
46 simpr 477 . . . . 5  |-  ( (
ph  /\  y  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )  ->  y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) ) )
4746breq2d 4665 . . . 4  |-  ( (
ph  /\  y  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )  ->  ( X  < 
y  <->  X  <  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) ) )
4840, 45, 47rexxfr2d 4883 . . 3  |-  ( ph  ->  ( E. y  e. 
ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) X  <  y  <->  E. a  e.  ( ~P A  i^i  Fin ) X  <  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) ) )
4938, 48mpbid 222 . 2  |-  ( ph  ->  E. a  e.  ( ~P A  i^i  Fin ) X  <  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
50 nfv 1843 . . . . . . 7  |-  F/ k  a  e.  ( ~P A  i^i  Fin )
512, 50nfan 1828 . . . . . 6  |-  F/ k ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )
52 simpr 477 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  ( ~P A  i^i  Fin ) )
5313, 52sseldi 3601 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  Fin )
54 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  ph )
5519sseli 3599 . . . . . . . . . 10  |-  ( a  e.  ( ~P A  i^i  Fin )  ->  a  e.  ~P A )
5655ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  a  e.  ~P A )
5756elpwid 4170 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  a  C_  A )
58 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  a )
5957, 58sseldd 3604 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  A )
6054, 59, 5syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  B  e.  ( 0 [,] +oo ) )
6151, 53, 60gsumesum 30121 . . . . 5  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  = Σ* k  e.  a B )
6261breq2d 4665 . . . 4  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( X  <  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <->  X  < Σ* k  e.  a B ) )
6362biimpd 219 . . 3  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( X  <  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  ->  X  < Σ* k  e.  a B ) )
6463reximdva 3017 . 2  |-  ( ph  ->  ( E. a  e.  ( ~P A  i^i  Fin ) X  <  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  ->  E. a  e.  ( ~P A  i^i  Fin ) X  < Σ* k  e.  a B ) )
6549, 64mpd 15 1  |-  ( ph  ->  E. a  e.  ( ~P A  i^i  Fin ) X  < Σ* k  e.  a B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115  (class class class)co 6650   Fincfn 7955   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,]cicc 12178   ↾s cress 15858    gsumg cgsu 16101   RR*scxrs 16160  CMndccmn 18193  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-esum 30090
This theorem is referenced by:  esumfsup  30132  esum2d  30155
  Copyright terms: Public domain W3C validator