Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   Unicode version

Theorem expgrowthi 38532
Description: Exponential growth and decay model. See expgrowth 38534 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
expgrowthi.k  |-  ( ph  ->  K  e.  CC )
expgrowthi.y0  |-  ( ph  ->  C  e.  CC )
expgrowthi.yt  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
Assertion
Ref Expression
expgrowthi  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Distinct variable groups:    t, C    t, K    t, S
Allowed substitution hints:    ph( t)    Y( t)

Proof of Theorem expgrowthi
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
2 oveq2 6658 . . . . . . . 8  |-  ( t  =  y  ->  ( K  x.  t )  =  ( K  x.  y ) )
32fveq2d 6195 . . . . . . 7  |-  ( t  =  y  ->  ( exp `  ( K  x.  t ) )  =  ( exp `  ( K  x.  y )
) )
43oveq2d 6666 . . . . . 6  |-  ( t  =  y  ->  ( C  x.  ( exp `  ( K  x.  t
) ) )  =  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
54cbvmptv 4750 . . . . 5  |-  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t )
) ) )  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
61, 5eqtri 2644 . . . 4  |-  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
76oveq2i 6661 . . 3  |-  ( S  _D  Y )  =  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
8 expgrowthi.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
9 elpri 4197 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
10 eleq2 2690 . . . . . . . . . 10  |-  ( S  =  RR  ->  (
y  e.  S  <->  y  e.  RR ) )
11 recn 10026 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
1210, 11syl6bi 243 . . . . . . . . 9  |-  ( S  =  RR  ->  (
y  e.  S  -> 
y  e.  CC ) )
13 eleq2 2690 . . . . . . . . . 10  |-  ( S  =  CC  ->  (
y  e.  S  <->  y  e.  CC ) )
1413biimpd 219 . . . . . . . . 9  |-  ( S  =  CC  ->  (
y  e.  S  -> 
y  e.  CC ) )
1512, 14jaoi 394 . . . . . . . 8  |-  ( ( S  =  RR  \/  S  =  CC )  ->  ( y  e.  S  ->  y  e.  CC ) )
168, 9, 153syl 18 . . . . . . 7  |-  ( ph  ->  ( y  e.  S  ->  y  e.  CC ) )
1716imp 445 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
18 expgrowthi.k . . . . . . . 8  |-  ( ph  ->  K  e.  CC )
19 mulcl 10020 . . . . . . . 8  |-  ( ( K  e.  CC  /\  y  e.  CC )  ->  ( K  x.  y
)  e.  CC )
2018, 19sylan 488 . . . . . . 7  |-  ( (
ph  /\  y  e.  CC )  ->  ( K  x.  y )  e.  CC )
21 efcl 14813 . . . . . . 7  |-  ( ( K  x.  y )  e.  CC  ->  ( exp `  ( K  x.  y ) )  e.  CC )
2220, 21syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  CC )  ->  ( exp `  ( K  x.  y
) )  e.  CC )
2317, 22syldan 487 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( K  x.  y ) )  e.  CC )
24 ovexd 6680 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
25 cnelprrecn 10029 . . . . . . . 8  |-  CC  e.  { RR ,  CC }
2625a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  { RR ,  CC } )
2717, 20syldan 487 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  y )  e.  CC )
2818adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  K  e.  CC )
29 efcl 14813 . . . . . . . 8  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
3029adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( exp `  x )  e.  CC )
31 1cnd 10056 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  1  e.  CC )
328dvmptid 23720 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  y ) )  =  ( y  e.  S  |->  1 ) )
338, 17, 31, 32, 18dvmptcmul 23727 . . . . . . . 8  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  ( K  x.  1 ) ) )
3418mulid1d 10057 . . . . . . . . 9  |-  ( ph  ->  ( K  x.  1 )  =  K )
3534mpteq2dv 4745 . . . . . . . 8  |-  ( ph  ->  ( y  e.  S  |->  ( K  x.  1 ) )  =  ( y  e.  S  |->  K ) )
3633, 35eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  K ) )
37 dvef 23743 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  exp
38 eff 14812 . . . . . . . . . . . 12  |-  exp : CC
--> CC
39 ffn 6045 . . . . . . . . . . . 12  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
4038, 39ax-mp 5 . . . . . . . . . . 11  |-  exp  Fn  CC
41 dffn5 6241 . . . . . . . . . . 11  |-  ( exp 
Fn  CC  <->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
4240, 41mpbi 220 . . . . . . . . . 10  |-  exp  =  ( x  e.  CC  |->  ( exp `  x ) )
4342oveq2i 6661 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  ( CC  _D  ( x  e.  CC  |->  ( exp `  x ) ) )
4437, 43, 423eqtr3i 2652 . . . . . . . 8  |-  ( CC 
_D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
4544a1i 11 . . . . . . 7  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( exp `  x ) ) )  =  ( x  e.  CC  |->  ( exp `  x ) ) )
46 fveq2 6191 . . . . . . 7  |-  ( x  =  ( K  x.  y )  ->  ( exp `  x )  =  ( exp `  ( K  x.  y )
) )
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 23735 . . . . . 6  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) ) )
48 mulcom 10022 . . . . . . . . 9  |-  ( ( ( exp `  ( K  x.  y )
)  e.  CC  /\  K  e.  CC )  ->  ( ( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
4923, 18, 48syl2anr 495 . . . . . . . 8  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( ( exp `  ( K  x.  y ) )  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y
) ) ) )
5049anabss5 857 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
5150mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y )
) ) ) )
5247, 51eqtrd 2656 . . . . 5  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )
53 expgrowthi.y0 . . . . 5  |-  ( ph  ->  C  e.  CC )
548, 23, 24, 52, 53dvmptcmul 23727 . . . 4  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
5553, 18, 233anim123i 1247 . . . . . . . 8  |-  ( (
ph  /\  ph  /\  ( ph  /\  y  e.  S
) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
56553anidm12 1383 . . . . . . 7  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
5756anabss5 857 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
58 mul12 10202 . . . . . 6  |-  ( ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y ) )  e.  CC )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
5957, 58syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
6059mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
6154, 60eqtrd 2656 . . 3  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
627, 61syl5eq 2668 . 2  |-  ( ph  ->  ( S  _D  Y
)  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
63 ovexd 6680 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
64 fconstmpt 5163 . . . 4  |-  ( S  X.  { K }
)  =  ( y  e.  S  |->  K )
6564a1i 11 . . 3  |-  ( ph  ->  ( S  X.  { K } )  =  ( y  e.  S  |->  K ) )
666a1i 11 . . 3  |-  ( ph  ->  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y )
) ) ) )
678, 28, 63, 65, 66offval2 6914 . 2  |-  ( ph  ->  ( ( S  X.  { K } )  oF  x.  Y )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
6862, 67eqtr4d 2659 1  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   {cpr 4179    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   1c1 9937    x. cmul 9941   expce 14792    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  expgrowth  38534
  Copyright terms: Public domain W3C validator