MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   Unicode version

Theorem fta1blem 23928
Description: Lemma for fta1b 23929. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p  |-  P  =  (Poly1 `  R )
fta1b.b  |-  B  =  ( Base `  P
)
fta1b.d  |-  D  =  ( deg1  `  R )
fta1b.o  |-  O  =  (eval1 `  R )
fta1b.w  |-  W  =  ( 0g `  R
)
fta1b.z  |-  .0.  =  ( 0g `  P )
fta1blem.k  |-  K  =  ( Base `  R
)
fta1blem.t  |-  .X.  =  ( .r `  R )
fta1blem.x  |-  X  =  (var1 `  R )
fta1blem.s  |-  .x.  =  ( .s `  P )
fta1blem.1  |-  ( ph  ->  R  e.  CRing )
fta1blem.2  |-  ( ph  ->  M  e.  K )
fta1blem.3  |-  ( ph  ->  N  e.  K )
fta1blem.4  |-  ( ph  ->  ( M  .X.  N
)  =  W )
fta1blem.5  |-  ( ph  ->  M  =/=  W )
fta1blem.6  |-  ( ph  ->  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) ) )
Assertion
Ref Expression
fta1blem  |-  ( ph  ->  N  =  W )

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4  |-  ( ph  ->  N  e.  K )
2 fta1b.o . . . . . . 7  |-  O  =  (eval1 `  R )
3 fta1b.p . . . . . . 7  |-  P  =  (Poly1 `  R )
4 fta1blem.k . . . . . . 7  |-  K  =  ( Base `  R
)
5 fta1b.b . . . . . . 7  |-  B  =  ( Base `  P
)
6 fta1blem.1 . . . . . . 7  |-  ( ph  ->  R  e.  CRing )
7 fta1blem.x . . . . . . . 8  |-  X  =  (var1 `  R )
82, 7, 4, 3, 5, 6, 1evl1vard 19701 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  ( ( O `  X ) `  N
)  =  N ) )
9 fta1blem.2 . . . . . . 7  |-  ( ph  ->  M  e.  K )
10 fta1blem.s . . . . . . 7  |-  .x.  =  ( .s `  P )
11 fta1blem.t . . . . . . 7  |-  .X.  =  ( .r `  R )
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 19708 . . . . . 6  |-  ( ph  ->  ( ( M  .x.  X )  e.  B  /\  ( ( O `  ( M  .x.  X ) ) `  N )  =  ( M  .X.  N ) ) )
1312simprd 479 . . . . 5  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  N )  =  ( M  .X.  N ) )
14 fta1blem.4 . . . . 5  |-  ( ph  ->  ( M  .X.  N
)  =  W )
1513, 14eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  N )  =  W )
16 eqid 2622 . . . . . . 7  |-  ( R  ^s  K )  =  ( R  ^s  K )
17 eqid 2622 . . . . . . 7  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
18 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
194, 18eqeltri 2697 . . . . . . . 8  |-  K  e. 
_V
2019a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
212, 3, 16, 4evl1rhm 19696 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
226, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
235, 17rhmf 18726 . . . . . . . . 9  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
2422, 23syl 17 . . . . . . . 8  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
2512simpld 475 . . . . . . . 8  |-  ( ph  ->  ( M  .x.  X
)  e.  B )
2624, 25ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  e.  ( Base `  ( R  ^s  K ) ) )
2716, 4, 17, 6, 20, 26pwselbas 16149 . . . . . 6  |-  ( ph  ->  ( O `  ( M  .x.  X ) ) : K --> K )
2827ffnd 6046 . . . . 5  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  Fn  K )
29 fniniseg 6338 . . . . 5  |-  ( ( O `  ( M 
.x.  X ) )  Fn  K  ->  ( N  e.  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  <->  ( N  e.  K  /\  ( ( O `  ( M 
.x.  X ) ) `
 N )  =  W ) ) )
3028, 29syl 17 . . . 4  |-  ( ph  ->  ( N  e.  ( `' ( O `  ( M  .x.  X ) ) " { W } )  <->  ( N  e.  K  /\  (
( O `  ( M  .x.  X ) ) `
 N )  =  W ) ) )
311, 15, 30mpbir2and 957 . . 3  |-  ( ph  ->  N  e.  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
32 fvex 6201 . . . . . . . 8  |-  ( O `
 ( M  .x.  X ) )  e. 
_V
3332cnvex 7113 . . . . . . 7  |-  `' ( O `  ( M 
.x.  X ) )  e.  _V
3433imaex 7104 . . . . . 6  |-  ( `' ( O `  ( M  .x.  X ) )
" { W }
)  e.  _V
3534a1i 11 . . . . 5  |-  ( ph  ->  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
_V )
36 1nn0 11308 . . . . . 6  |-  1  e.  NN0
3736a1i 11 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
38 crngring 18558 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e.  Ring )
396, 38syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  Ring )
407, 3, 5vr1cl 19587 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  X  e.  B )
4139, 40syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  B )
42 eqid 2622 . . . . . . . . . . . . 13  |-  (mulGrp `  P )  =  (mulGrp `  P )
4342, 5mgpbas 18495 . . . . . . . . . . . 12  |-  B  =  ( Base `  (mulGrp `  P ) )
44 eqid 2622 . . . . . . . . . . . 12  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
4543, 44mulg1 17548 . . . . . . . . . . 11  |-  ( X  e.  B  ->  (
1 (.g `  (mulGrp `  P
) ) X )  =  X )
4641, 45syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1 (.g `  (mulGrp `  P ) ) X )  =  X )
4746oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) )  =  ( M 
.x.  X ) )
48 fta1blem.5 . . . . . . . . . . 11  |-  ( ph  ->  M  =/=  W )
49 fta1b.w . . . . . . . . . . . . 13  |-  W  =  ( 0g `  R
)
5049, 4, 3, 7, 10, 42, 44coe1tmfv1 19644 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  M  e.  K  /\  1  e.  NN0 )  ->  (
(coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  M )
5139, 9, 37, 50syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  M )
52 fta1b.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  P )
533, 52, 49coe1z 19633 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (coe1 `  .0.  )  =  ( NN0  X. 
{ W } ) )
5439, 53syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (coe1 `  .0.  )  =  ( NN0  X.  { W } ) )
5554fveq1d 6193 . . . . . . . . . . . 12  |-  ( ph  ->  ( (coe1 `  .0.  ) ` 
1 )  =  ( ( NN0  X.  { W } ) `  1
) )
56 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  e. 
_V
5749, 56eqeltri 2697 . . . . . . . . . . . . . 14  |-  W  e. 
_V
5857fvconst2 6469 . . . . . . . . . . . . 13  |-  ( 1  e.  NN0  ->  ( ( NN0  X.  { W } ) `  1
)  =  W )
5936, 58ax-mp 5 . . . . . . . . . . . 12  |-  ( ( NN0  X.  { W } ) `  1
)  =  W
6055, 59syl6eq 2672 . . . . . . . . . . 11  |-  ( ph  ->  ( (coe1 `  .0.  ) ` 
1 )  =  W )
6148, 51, 603netr4d 2871 . . . . . . . . . 10  |-  ( ph  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =/=  (
(coe1 `  .0.  ) ` 
1 ) )
62 fveq2 6191 . . . . . . . . . . . 12  |-  ( ( M  .x.  ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  .0.  ->  (coe1 `  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) ) )  =  (coe1 `  .0.  ) )
6362fveq1d 6193 . . . . . . . . . . 11  |-  ( ( M  .x.  ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  .0.  ->  ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  ( (coe1 `  .0.  ) ` 
1 ) )
6463necon3i 2826 . . . . . . . . . 10  |-  ( ( (coe1 `  ( M  .x.  ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =/=  (
(coe1 `  .0.  ) ` 
1 )  ->  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) )  =/=  .0.  )
6561, 64syl 17 . . . . . . . . 9  |-  ( ph  ->  ( M  .x.  (
1 (.g `  (mulGrp `  P
) ) X ) )  =/=  .0.  )
6647, 65eqnetrrd 2862 . . . . . . . 8  |-  ( ph  ->  ( M  .x.  X
)  =/=  .0.  )
67 eldifsn 4317 . . . . . . . 8  |-  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  <->  ( ( M  .x.  X )  e.  B  /\  ( M 
.x.  X )  =/= 
.0.  ) )
6825, 66, 67sylanbrc 698 . . . . . . 7  |-  ( ph  ->  ( M  .x.  X
)  e.  ( B 
\  {  .0.  }
) )
69 fta1blem.6 . . . . . . 7  |-  ( ph  ->  ( ( M  .x.  X )  e.  ( B  \  {  .0.  } )  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) ) )
7068, 69mpd 15 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
( D `  ( M  .x.  X ) ) )
7147fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  ( D `
 ( M  .x.  X ) ) )
72 fta1b.d . . . . . . . . 9  |-  D  =  ( deg1  `  R )
7372, 4, 3, 7, 10, 42, 44, 49deg1tm 23878 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( M  e.  K  /\  M  =/=  W )  /\  1  e.  NN0 )  -> 
( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  1 )
7439, 9, 48, 37, 73syl121anc 1331 . . . . . . 7  |-  ( ph  ->  ( D `  ( M  .x.  ( 1 (.g `  (mulGrp `  P )
) X ) ) )  =  1 )
7571, 74eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( D `  ( M  .x.  X ) )  =  1 )
7670, 75breqtrd 4679 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1 )
77 hashbnd 13123 . . . . 5  |-  ( ( ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
_V  /\  1  e.  NN0 
/\  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1 )  ->  ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  Fin )
7835, 37, 76, 77syl3anc 1326 . . . 4  |-  ( ph  ->  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
Fin )
794, 49ring0cl 18569 . . . . . . 7  |-  ( R  e.  Ring  ->  W  e.  K )
8039, 79syl 17 . . . . . 6  |-  ( ph  ->  W  e.  K )
81 eqid 2622 . . . . . . . . . . . . 13  |-  (algSc `  P )  =  (algSc `  P )
823, 81, 4, 5ply1sclf 19655 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  (algSc `  P ) : K --> B )
8339, 82syl 17 . . . . . . . . . . 11  |-  ( ph  ->  (algSc `  P ) : K --> B )
8483, 9ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( (algSc `  P
) `  M )  e.  B )
85 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  P )  =  ( .r `  P
)
86 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
875, 85, 86rhmmul 18727 . . . . . . . . . 10  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( (algSc `  P ) `  M
)  e.  B  /\  X  e.  B )  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( ( O `
 ( (algSc `  P ) `  M
) ) ( .r
`  ( R  ^s  K
) ) ( O `
 X ) ) )
8822, 84, 41, 87syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( ( O `
 ( (algSc `  P ) `  M
) ) ( .r
`  ( R  ^s  K
) ) ( O `
 X ) ) )
893ply1assa 19569 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  P  e. AssAlg )
906, 89syl 17 . . . . . . . . . . 11  |-  ( ph  ->  P  e. AssAlg )
913ply1sca 19623 . . . . . . . . . . . . . . 15  |-  ( R  e.  CRing  ->  R  =  (Scalar `  P ) )
926, 91syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  =  (Scalar `  P ) )
9392fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
944, 93syl5eq 2668 . . . . . . . . . . . 12  |-  ( ph  ->  K  =  ( Base `  (Scalar `  P )
) )
959, 94eleqtrd 2703 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ( Base `  (Scalar `  P )
) )
96 eqid 2622 . . . . . . . . . . . 12  |-  (Scalar `  P )  =  (Scalar `  P )
97 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
9881, 96, 97, 5, 85, 10asclmul1 19339 . . . . . . . . . . 11  |-  ( ( P  e. AssAlg  /\  M  e.  ( Base `  (Scalar `  P ) )  /\  X  e.  B )  ->  ( ( (algSc `  P ) `  M
) ( .r `  P ) X )  =  ( M  .x.  X ) )
9990, 95, 41, 98syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( ( (algSc `  P ) `  M
) ( .r `  P ) X )  =  ( M  .x.  X ) )
10099fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( O `  (
( (algSc `  P
) `  M )
( .r `  P
) X ) )  =  ( O `  ( M  .x.  X ) ) )
10124, 84ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  (
(algSc `  P ) `  M ) )  e.  ( Base `  ( R  ^s  K ) ) )
10224, 41ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  X
)  e.  ( Base `  ( R  ^s  K ) ) )
10316, 17, 6, 20, 101, 102, 11, 86pwsmulrval 16151 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) ) ( .r `  ( R  ^s  K ) ) ( O `  X ) )  =  ( ( O `  ( (algSc `  P ) `  M
) )  oF 
.X.  ( O `  X ) ) )
1042, 3, 4, 81evl1sca 19698 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  M  e.  K )  ->  ( O `  ( (algSc `  P ) `  M
) )  =  ( K  X.  { M } ) )
1056, 9, 104syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  (
(algSc `  P ) `  M ) )  =  ( K  X.  { M } ) )
1062, 7, 4evl1var 19700 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  ( O `  X )  =  (  _I  |`  K )
)
1076, 106syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  X
)  =  (  _I  |`  K ) )
108105, 107oveq12d 6668 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) )  oF  .X.  ( O `  X ) )  =  ( ( K  X.  { M } )  oF  .X.  (  _I  |`  K ) ) )
109103, 108eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  ( (algSc `  P ) `  M ) ) ( .r `  ( R  ^s  K ) ) ( O `  X ) )  =  ( ( K  X.  { M } )  oF 
.X.  (  _I  |`  K ) ) )
11088, 100, 1093eqtr3d 2664 . . . . . . . 8  |-  ( ph  ->  ( O `  ( M  .x.  X ) )  =  ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) )
111110fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  W )  =  ( ( ( K  X.  { M } )  oF 
.X.  (  _I  |`  K ) ) `  W ) )
112 fnconstg 6093 . . . . . . . . . 10  |-  ( M  e.  K  ->  ( K  X.  { M }
)  Fn  K )
1139, 112syl 17 . . . . . . . . 9  |-  ( ph  ->  ( K  X.  { M } )  Fn  K
)
114 fnresi 6008 . . . . . . . . . 10  |-  (  _I  |`  K )  Fn  K
115114a1i 11 . . . . . . . . 9  |-  ( ph  ->  (  _I  |`  K )  Fn  K )
116 fnfvof 6911 . . . . . . . . 9  |-  ( ( ( ( K  X.  { M } )  Fn  K  /\  (  _I  |`  K )  Fn  K
)  /\  ( K  e.  _V  /\  W  e.  K ) )  -> 
( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  ( ( ( K  X.  { M } ) `  W
)  .X.  ( (  _I  |`  K ) `  W ) ) )
117113, 115, 20, 80, 116syl22anc 1327 . . . . . . . 8  |-  ( ph  ->  ( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  ( ( ( K  X.  { M } ) `  W
)  .X.  ( (  _I  |`  K ) `  W ) ) )
118 fvconst2g 6467 . . . . . . . . . . 11  |-  ( ( M  e.  K  /\  W  e.  K )  ->  ( ( K  X.  { M } ) `  W )  =  M )
1199, 80, 118syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( K  X.  { M } ) `  W )  =  M )
120 fvresi 6439 . . . . . . . . . . 11  |-  ( W  e.  K  ->  (
(  _I  |`  K ) `
 W )  =  W )
12180, 120syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( (  _I  |`  K ) `
 W )  =  W )
122119, 121oveq12d 6668 . . . . . . . . 9  |-  ( ph  ->  ( ( ( K  X.  { M }
) `  W )  .X.  ( (  _I  |`  K ) `
 W ) )  =  ( M  .X.  W ) )
1234, 11, 49ringrz 18588 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  M  e.  K )  ->  ( M  .X.  W )  =  W )
12439, 9, 123syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( M  .X.  W
)  =  W )
125122, 124eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( ( K  X.  { M }
) `  W )  .X.  ( (  _I  |`  K ) `
 W ) )  =  W )
126117, 125eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( K  X.  { M }
)  oF  .X.  (  _I  |`  K ) ) `  W )  =  W )
127111, 126eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( O `  ( M  .x.  X ) ) `  W )  =  W )
128 fniniseg 6338 . . . . . . 7  |-  ( ( O `  ( M 
.x.  X ) )  Fn  K  ->  ( W  e.  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  <->  ( W  e.  K  /\  ( ( O `  ( M 
.x.  X ) ) `
 W )  =  W ) ) )
12928, 128syl 17 . . . . . 6  |-  ( ph  ->  ( W  e.  ( `' ( O `  ( M  .x.  X ) ) " { W } )  <->  ( W  e.  K  /\  (
( O `  ( M  .x.  X ) ) `
 W )  =  W ) ) )
13080, 127, 129mpbir2and 957 . . . . 5  |-  ( ph  ->  W  e.  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
131130snssd 4340 . . . 4  |-  ( ph  ->  { W }  C_  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
132 hashsng 13159 . . . . . . 7  |-  ( W  e.  K  ->  ( # `
 { W }
)  =  1 )
13380, 132syl 17 . . . . . 6  |-  ( ph  ->  ( # `  { W } )  =  1 )
134 ssdomg 8001 . . . . . . . . . 10  |-  ( ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  _V  ->  ( { W }  C_  ( `' ( O `
 ( M  .x.  X ) ) " { W } )  ->  { W }  ~<_  ( `' ( O `  ( M  .x.  X ) )
" { W }
) ) )
13534, 131, 134mpsyl 68 . . . . . . . . 9  |-  ( ph  ->  { W }  ~<_  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )
136 snfi 8038 . . . . . . . . . 10  |-  { W }  e.  Fin
137 hashdom 13168 . . . . . . . . . 10  |-  ( ( { W }  e.  Fin  /\  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  e.  _V )  ->  ( ( # `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~<_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
138136, 34, 137mp2an 708 . . . . . . . . 9  |-  ( (
# `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~<_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )
139135, 138sylibr 224 . . . . . . . 8  |-  ( ph  ->  ( # `  { W } )  <_  ( # `
 ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
140133, 139eqbrtrrd 4677 . . . . . . 7  |-  ( ph  ->  1  <_  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) ) )
141 hashcl 13147 . . . . . . . . . 10  |-  ( ( `' ( O `  ( M  .x.  X ) ) " { W } )  e.  Fin  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e. 
NN0 )
14278, 141syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e. 
NN0 )
143142nn0red 11352 . . . . . . . 8  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e.  RR )
144 1re 10039 . . . . . . . 8  |-  1  e.  RR
145 letri3 10123 . . . . . . . 8  |-  ( ( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  e.  RR  /\  1  e.  RR )  ->  (
( # `  ( `' ( O `  ( M  .x.  X ) )
" { W }
) )  =  1  <-> 
( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  <_ 
1  /\  1  <_  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) ) ) )
146143, 144, 145sylancl 694 . . . . . . 7  |-  ( ph  ->  ( ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  =  1  <->  ( ( # `  ( `' ( O `
 ( M  .x.  X ) ) " { W } ) )  <_  1  /\  1  <_  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) ) ) ) )
14776, 140, 146mpbir2and 957 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )  =  1 )
148133, 147eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
149 hashen 13135 . . . . . 6  |-  ( ( { W }  e.  Fin  /\  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  e.  Fin )  ->  ( ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
150136, 78, 149sylancr 695 . . . . 5  |-  ( ph  ->  ( ( # `  { W } )  =  (
# `  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  <->  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) ) )
151148, 150mpbid 222 . . . 4  |-  ( ph  ->  { W }  ~~  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
152 fisseneq 8171 . . . 4  |-  ( ( ( `' ( O `
 ( M  .x.  X ) ) " { W } )  e. 
Fin  /\  { W }  C_  ( `' ( O `  ( M 
.x.  X ) )
" { W }
)  /\  { W }  ~~  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )  ->  { W }  =  ( `' ( O `  ( M 
.x.  X ) )
" { W }
) )
15378, 131, 151, 152syl3anc 1326 . . 3  |-  ( ph  ->  { W }  =  ( `' ( O `  ( M  .x.  X ) ) " { W } ) )
15431, 153eleqtrrd 2704 . 2  |-  ( ph  ->  N  e.  { W } )
155 elsni 4194 . 2  |-  ( N  e.  { W }  ->  N  =  W )
156154, 155syl 17 1  |-  ( ph  ->  N  =  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   RRcr 9935   1c1 9937    <_ cle 10075   NN0cn0 11292   #chash 13117   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    ^s cpws 16107  .gcmg 17540  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  AssAlgcasa 19309  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548  eval1ce1 19679   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  fta1b  23929
  Copyright terms: Public domain W3C validator