MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem2 Structured version   Visualization version   Unicode version

Theorem ftc1lem2 23799
Description: Lemma for ftc1 23805. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1a.f  |-  ( ph  ->  F : D --> CC )
Assertion
Ref Expression
ftc1lem2  |-  ( ph  ->  G : ( A [,] B ) --> CC )
Distinct variable groups:    x, t, D    t, A, x    t, B, x    ph, t, x   
t, F, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1lem2
StepHypRef Expression
1 fvexd 6203 . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  ( F `  t )  e.  _V )
2 ftc1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
32adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
43rexrd 10089 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
5 ftc1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
6 elicc2 12238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
75, 2, 6syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
87biimpa 501 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
98simp3d 1075 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
10 iooss2 12211 . . . . . 6  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
114, 9, 10syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
12 ftc1.s . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  D )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) B )  C_  D
)
1411, 13sstrd 3613 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  D
)
15 ioombl 23333 . . . . 5  |-  ( A (,) x )  e. 
dom  vol
1615a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
17 fvexd 6203 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
18 ftc1a.f . . . . . . 7  |-  ( ph  ->  F : D --> CC )
1918feqmptd 6249 . . . . . 6  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
20 ftc1.i . . . . . 6  |-  ( ph  ->  F  e.  L^1 )
2119, 20eqeltrrd 2702 . . . . 5  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L^1 )
2221adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  D  |->  ( F `
 t ) )  e.  L^1 )
2314, 16, 17, 22iblss 23571 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( F `  t ) )  e.  L^1 )
241, 23itgcl 23550 . 2  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( F `  t )  _d t  e.  CC )
25 ftc1.g . 2  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
2624, 25fmptd 6385 1  |-  ( ph  ->  G : ( A [,] B ) --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   volcvol 23232   L^1cibl 23386   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392
This theorem is referenced by:  ftc1a  23800  ftc1lem5  23803  ftc1lem6  23804  ftc1  23805  ftc1cn  23806  ftc1cnnc  33484  ftc1anc  33493
  Copyright terms: Public domain W3C validator