MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   Unicode version

Theorem ftc1lem5 23803
Description: Lemma for ftc1 23805. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
ftc1.e  |-  ( ph  ->  E  e.  RR+ )
ftc1.r  |-  ( ph  ->  R  e.  RR+ )
ftc1.fc  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
ftc1.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1.x2  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
Assertion
Ref Expression
ftc1lem5  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Distinct variable groups:    x, t,
y, z, C    t, D, x, y, z    y, G, z    t, A, x, y, z    t, B, x, y, z    t, X, x, z    t, E, y    y, H    ph, t, x, y, z    t, F, x, y, z    x, L, y, z    y, R
Allowed substitution hints:    R( x, z, t)    E( x, z)    G( x, t)    H( x, z, t)    J( x, y, z, t)    K( x, y, z, t)    L( t)    X( y)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 ftc1.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
3 iccssre 12255 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 693 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1.x1 . . . . 5  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3604 . . . 4  |-  ( ph  ->  X  e.  RR )
7 ioossicc 12259 . . . . . 6  |-  ( A (,) B )  C_  ( A [,] B )
8 ftc1.c . . . . . 6  |-  ( ph  ->  C  e.  ( A (,) B ) )
97, 8sseldi 3601 . . . . 5  |-  ( ph  ->  C  e.  ( A [,] B ) )
104, 9sseldd 3604 . . . 4  |-  ( ph  ->  C  e.  RR )
116, 10lttri2d 10176 . . 3  |-  ( ph  ->  ( X  =/=  C  <->  ( X  <  C  \/  C  <  X ) ) )
1211biimpa 501 . 2  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  <  C  \/  C  < 
X ) )
135adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( A [,] B ) )
146adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  e.  RR )
15 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  C )  ->  X  <  C )
1614, 15ltned 10173 . . . . . . . . 9  |-  ( (
ph  /\  X  <  C )  ->  X  =/=  C )
17 eldifsn 4317 . . . . . . . . 9  |-  ( X  e.  ( ( A [,] B )  \  { C } )  <->  ( X  e.  ( A [,] B
)  /\  X  =/=  C ) )
1813, 16, 17sylanbrc 698 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
19 fveq2 6191 . . . . . . . . . . 11  |-  ( z  =  X  ->  ( G `  z )  =  ( G `  X ) )
2019oveq1d 6665 . . . . . . . . . 10  |-  ( z  =  X  ->  (
( G `  z
)  -  ( G `
 C ) )  =  ( ( G `
 X )  -  ( G `  C ) ) )
21 oveq1 6657 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  -  C )  =  ( X  -  C ) )
2220, 21oveq12d 6668 . . . . . . . . 9  |-  ( z  =  X  ->  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  =  ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) ) )
23 ftc1.h . . . . . . . . 9  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
24 ovex 6678 . . . . . . . . 9  |-  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) )  e. 
_V
2522, 23, 24fvmpt 6282 . . . . . . . 8  |-  ( X  e.  ( ( A [,] B )  \  { C } )  -> 
( H `  X
)  =  ( ( ( G `  X
)  -  ( G `
 C ) )  /  ( X  -  C ) ) )
2618, 25syl 17 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
27 ftc1.g . . . . . . . . . . . 12  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
28 ftc1.le . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  B )
29 ftc1.s . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) B
)  C_  D )
30 ftc1.d . . . . . . . . . . . 12  |-  ( ph  ->  D  C_  RR )
31 ftc1.i . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  L^1 )
32 ftc1.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
33 ftc1.j . . . . . . . . . . . . 13  |-  J  =  ( Lt  RR )
34 ftc1.k . . . . . . . . . . . . 13  |-  K  =  ( Lt  D )
35 ftc1.l . . . . . . . . . . . . 13  |-  L  =  ( TopOpen ` fld )
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 23801 . . . . . . . . . . . 12  |-  ( ph  ->  F : D --> CC )
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 23799 . . . . . . . . . . 11  |-  ( ph  ->  G : ( A [,] B ) --> CC )
3837, 5ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
)  e.  CC )
3937, 9ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( G `  C
)  e.  CC )
4038, 39subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( ( G `  X )  -  ( G `  C )
)  e.  CC )
4140adantr 481 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( ( G `  X )  -  ( G `  C ) )  e.  CC )
426recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
4310recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
4442, 43subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( X  -  C
)  e.  CC )
4544adantr 481 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  e.  CC )
4642, 43subeq0ad 10402 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  -  C )  =  0  <-> 
X  =  C ) )
4746necon3bid 2838 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  -  C )  =/=  0  <->  X  =/=  C ) )
4847biimpar 502 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  C )  ->  ( X  -  C )  =/=  0
)
4916, 48syldan 487 . . . . . . . 8  |-  ( (
ph  /\  X  <  C )  ->  ( X  -  C )  =/=  0
)
5041, 45, 49div2negd 10816 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 X )  -  ( G `  C ) )  /  ( X  -  C ) ) )
5138, 39negsubdi2d 10408 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( G `
 X )  -  ( G `  C ) )  =  ( ( G `  C )  -  ( G `  X ) ) )
5242, 43negsubdi2d 10408 . . . . . . . . 9  |-  ( ph  -> 
-u ( X  -  C )  =  ( C  -  X ) )
5351, 52oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( -u ( ( G `  X )  -  ( G `  C ) )  /  -u ( X  -  C
) )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5453adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  <  C )  ->  ( -u (
( G `  X
)  -  ( G `
 C ) )  /  -u ( X  -  C ) )  =  ( ( ( G `
 C )  -  ( G `  X ) )  /  ( C  -  X ) ) )
5526, 50, 543eqtr2d 2662 . . . . . 6  |-  ( (
ph  /\  X  <  C )  ->  ( H `  X )  =  ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) ) )
5655oveq1d 6665 . . . . 5  |-  ( (
ph  /\  X  <  C )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )
5756fveq2d 6195 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  C )  -  ( G `  X )
)  /  ( C  -  X ) )  -  ( F `  C ) ) ) )
58 ftc1.e . . . . 5  |-  ( ph  ->  E  e.  RR+ )
59 ftc1.r . . . . 5  |-  ( ph  ->  R  e.  RR+ )
60 ftc1.fc . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
61 ftc1.x2 . . . . 5  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
6243subidd 10380 . . . . . . 7  |-  ( ph  ->  ( C  -  C
)  =  0 )
6362abs00bd 14031 . . . . . 6  |-  ( ph  ->  ( abs `  ( C  -  C )
)  =  0 )
6459rpgt0d 11875 . . . . . 6  |-  ( ph  ->  0  <  R )
6563, 64eqbrtrd 4675 . . . . 5  |-  ( ph  ->  ( abs `  ( C  -  C )
)  <  R )
6627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 58, 59, 60, 5, 61, 9, 65ftc1lem4 23802 . . . 4  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( ( ( G `  C )  -  ( G `  X ) )  / 
( C  -  X
) )  -  ( F `  C )
) )  <  E
)
6757, 66eqbrtrd 4675 . . 3  |-  ( (
ph  /\  X  <  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
685adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( A [,] B ) )
6910adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  e.  RR )
70 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  C  <  X )  ->  C  <  X )
7169, 70gtned 10172 . . . . . . . 8  |-  ( (
ph  /\  C  <  X )  ->  X  =/=  C )
7268, 71, 17sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  C  <  X )  ->  X  e.  ( ( A [,] B )  \  { C } ) )
7372, 25syl 17 . . . . . 6  |-  ( (
ph  /\  C  <  X )  ->  ( H `  X )  =  ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) ) )
7473oveq1d 6665 . . . . 5  |-  ( (
ph  /\  C  <  X )  ->  ( ( H `  X )  -  ( F `  C ) )  =  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )
7574fveq2d 6195 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  =  ( abs `  ( ( ( ( G `  X )  -  ( G `  C )
)  /  ( X  -  C ) )  -  ( F `  C ) ) ) )
7627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 58, 59, 60, 9, 65, 5, 61ftc1lem4 23802 . . . 4  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( ( ( G `  X )  -  ( G `  C ) )  / 
( X  -  C
) )  -  ( F `  C )
) )  <  E
)
7775, 76eqbrtrd 4675 . . 3  |-  ( (
ph  /\  C  <  X )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
7867, 77jaodan 826 . 2  |-  ( (
ph  /\  ( X  <  C  \/  C  < 
X ) )  -> 
( abs `  (
( H `  X
)  -  ( F `
 C ) ) )  <  E )
7912, 78syldan 487 1  |-  ( (
ph  /\  X  =/=  C )  ->  ( abs `  ( ( H `  X )  -  ( F `  C )
) )  <  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   abscabs 13974   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746    CnP ccnp 21029   L^1cibl 23386   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  ftc1lem6  23804
  Copyright terms: Public domain W3C validator