Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomodle Structured version   Visualization version   Unicode version

Theorem idomodle 37774
Description: Limit on the number of  N-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
idomodle.g  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
idomodle.b  |-  B  =  ( Base `  G
)
idomodle.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
idomodle  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  N } )  <_  N
)
Distinct variable groups:    x, B    x, N    x, R
Allowed substitution hints:    G( x)    O( x)

Proof of Theorem idomodle
StepHypRef Expression
1 idomodle.b . . . . 5  |-  B  =  ( Base `  G
)
2 fvex 6201 . . . . 5  |-  ( Base `  G )  e.  _V
31, 2eqeltri 2697 . . . 4  |-  B  e. 
_V
43rabex 4813 . . 3  |-  { x  e.  B  |  ( O `  x )  ||  N }  e.  _V
5 hashxrcl 13148 . . 3  |-  ( { x  e.  B  | 
( O `  x
)  ||  N }  e.  _V  ->  ( # `  {
x  e.  B  | 
( O `  x
)  ||  N }
)  e.  RR* )
64, 5mp1i 13 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  N } )  e.  RR* )
7 fvex 6201 . . . 4  |-  ( Base `  R )  e.  _V
87rabex 4813 . . 3  |-  { x  e.  ( Base `  R
)  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  e.  _V
9 hashxrcl 13148 . . 3  |-  ( { x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  e.  _V  ->  ( # `  {
x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )  e.  RR* )
108, 9mp1i 13 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  ( Base `  R
)  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )  e.  RR* )
11 nnre 11027 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
1211rexrd 10089 . . 3  |-  ( N  e.  NN  ->  N  e.  RR* )
1312adantl 482 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  N  e.  RR* )
14 isidom 19304 . . . . . . . . . . . 12  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
1514simplbi 476 . . . . . . . . . . 11  |-  ( R  e. IDomn  ->  R  e.  CRing )
1615adantr 481 . . . . . . . . . 10  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  R  e.  CRing )
17 crngring 18558 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  R  e.  Ring )
1816, 17syl 17 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  R  e.  Ring )
1918adantr 481 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  R  e.  Ring )
20 eqid 2622 . . . . . . . . 9  |-  (Unit `  R )  =  (Unit `  R )
21 idomodle.g . . . . . . . . 9  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
2220, 21unitgrp 18667 . . . . . . . 8  |-  ( R  e.  Ring  ->  G  e. 
Grp )
2319, 22syl 17 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  G  e.  Grp )
24 simpr 477 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  x  e.  B )
25 nnz 11399 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
2625ad2antlr 763 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  N  e.  ZZ )
27 idomodle.o . . . . . . . 8  |-  O  =  ( od `  G
)
28 eqid 2622 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
29 eqid 2622 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
301, 27, 28, 29oddvds 17966 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  N  e.  ZZ )  ->  ( ( O `  x )  ||  N  <->  ( N (.g `  G ) x )  =  ( 0g
`  G ) ) )
3123, 24, 26, 30syl3anc 1326 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  (
( O `  x
)  ||  N  <->  ( N
(.g `  G ) x )  =  ( 0g
`  G ) ) )
32 eqid 2622 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
3320, 32unitsubm 18670 . . . . . . . . 9  |-  ( R  e.  Ring  ->  (Unit `  R )  e.  (SubMnd `  (mulGrp `  R )
) )
3419, 33syl 17 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  (Unit `  R )  e.  (SubMnd `  (mulGrp `  R )
) )
35 nnnn0 11299 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
3635ad2antlr 763 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  N  e.  NN0 )
3720, 21unitgrpbas 18666 . . . . . . . . . 10  |-  (Unit `  R )  =  (
Base `  G )
381, 37eqtr4i 2647 . . . . . . . . 9  |-  B  =  (Unit `  R )
3924, 38syl6eleq 2711 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  x  e.  (Unit `  R )
)
40 eqid 2622 . . . . . . . . 9  |-  (.g `  (mulGrp `  R ) )  =  (.g `  (mulGrp `  R
) )
4140, 21, 28submmulg 17586 . . . . . . . 8  |-  ( ( (Unit `  R )  e.  (SubMnd `  (mulGrp `  R
) )  /\  N  e.  NN0  /\  x  e.  (Unit `  R )
)  ->  ( N
(.g `  (mulGrp `  R
) ) x )  =  ( N (.g `  G ) x ) )
4234, 36, 39, 41syl3anc 1326 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  ( N (.g `  (mulGrp `  R
) ) x )  =  ( N (.g `  G ) x ) )
43 eqid 2622 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  R
)
4420, 21, 43unitgrpid 18669 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  G
) )
4519, 44syl 17 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  ( 1r `  R )  =  ( 0g `  G
) )
4642, 45eqeq12d 2637 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  (
( N (.g `  (mulGrp `  R ) ) x )  =  ( 1r
`  R )  <->  ( N
(.g `  G ) x )  =  ( 0g
`  G ) ) )
4731, 46bitr4d 271 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  x  e.  B )  ->  (
( O `  x
)  ||  N  <->  ( N
(.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) ) )
4847rabbidva 3188 . . . 4  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  { x  e.  B  |  ( O `  x )  ||  N }  =  {
x  e.  B  | 
( N (.g `  (mulGrp `  R ) ) x )  =  ( 1r
`  R ) } )
4948fveq2d 6195 . . 3  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  N } )  =  (
# `  { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } ) )
50 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
5150, 38unitss 18660 . . . . . 6  |-  B  C_  ( Base `  R )
52 rabss2 3685 . . . . . 6  |-  ( B 
C_  ( Base `  R
)  ->  { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  C_  { x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )
5351, 52mp1i 13 . . . . 5  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  C_  { x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )
54 ssdomg 8001 . . . . 5  |-  ( { x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  e.  _V  ->  ( { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  C_  { x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  ->  { x  e.  B  | 
( N (.g `  (mulGrp `  R ) ) x )  =  ( 1r
`  R ) }  ~<_  { x  e.  (
Base `  R )  |  ( N (.g `  (mulGrp `  R )
) x )  =  ( 1r `  R
) } ) )
558, 53, 54mpsyl 68 . . . 4  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) }  ~<_  { x  e.  ( Base `  R
)  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )
56 hashdomi 13169 . . . 4  |-  ( { x  e.  B  | 
( N (.g `  (mulGrp `  R ) ) x )  =  ( 1r
`  R ) }  ~<_  { x  e.  (
Base `  R )  |  ( N (.g `  (mulGrp `  R )
) x )  =  ( 1r `  R
) }  ->  ( # `
 { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )  <_  ( # `  {
x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } ) )
5755, 56syl 17 . . 3  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )  <_  ( # `  {
x  e.  ( Base `  R )  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } ) )
5849, 57eqbrtrd 4675 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  N } )  <_  ( # `
 { x  e.  ( Base `  R
)  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } ) )
59 simpl 473 . . 3  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  R  e. IDomn )
6050, 43ringidcl 18568 . . . 4  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
6118, 60syl 17 . . 3  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( 1r `  R )  e.  ( Base `  R
) )
62 simpr 477 . . 3  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  N  e.  NN )
6350, 40idomrootle 37773 . . 3  |-  ( ( R  e. IDomn  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  N  e.  NN )  ->  ( # `  { x  e.  (
Base `  R )  |  ( N (.g `  (mulGrp `  R )
) x )  =  ( 1r `  R
) } )  <_  N )
6459, 61, 62, 63syl3anc 1326 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  ( Base `  R
)  |  ( N (.g `  (mulGrp `  R
) ) x )  =  ( 1r `  R ) } )  <_  N )
656, 10, 13, 58, 64xrletrd 11993 1  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  N } )  <_  N
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953   RR*cxr 10073    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   #chash 13117    || cdvds 14983   Basecbs 15857   ↾s cress 15858   0gc0g 16100  SubMndcsubmnd 17334   Grpcgrp 17422  .gcmg 17540   odcod 17944  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639  Domncdomn 19280  IDomncidom 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893
This theorem is referenced by:  idomsubgmo  37776
  Copyright terms: Public domain W3C validator