MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   Unicode version

Theorem iscmet3lem3 23088
Description: Lemma for iscmet3 23091. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
iscmet3lem3  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( 1  /  2
) ^ k )  <  R )
Distinct variable groups:    j, k, R    j, Z, k    j, M, k

Proof of Theorem iscmet3lem3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 simpl 473 . . 3  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  ->  M  e.  ZZ )
3 simpr 477 . . 3  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  ->  R  e.  RR+ )
4 eluzelz 11697 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
54, 1eleq2s 2719 . . . . 5  |-  ( k  e.  Z  ->  k  e.  ZZ )
65adantl 482 . . . 4  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  k  e.  Z
)  ->  k  e.  ZZ )
7 oveq2 6658 . . . . 5  |-  ( n  =  k  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
k ) )
8 eqid 2622 . . . . 5  |-  ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^
n ) )
9 ovex 6678 . . . . 5  |-  ( ( 1  /  2 ) ^ k )  e. 
_V
107, 8, 9fvmpt 6282 . . . 4  |-  ( k  e.  ZZ  ->  (
( n  e.  ZZ  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
116, 10syl 17 . . 3  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) ) `  k )  =  ( ( 1  /  2 ) ^
k ) )
12 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1312reseq2i 5393 . . . . . 6  |-  ( ( n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  |`  NN0 )  =  ( ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^
n ) )  |`  ( ZZ>= `  0 )
)
14 nn0ssz 11398 . . . . . . 7  |-  NN0  C_  ZZ
15 resmpt 5449 . . . . . . 7  |-  ( NN0  C_  ZZ  ->  ( (
n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  |`  NN0 )  =  ( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) )
1614, 15ax-mp 5 . . . . . 6  |-  ( ( n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  |`  NN0 )  =  ( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) )
1713, 16eqtr3i 2646 . . . . 5  |-  ( ( n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  |`  ( ZZ>= ` 
0 ) )  =  ( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) )
18 halfcn 11247 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
1918a1i 11 . . . . . 6  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( 1  /  2
)  e.  CC )
20 halfre 11246 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
21 1rp 11836 . . . . . . . . . . 11  |-  1  e.  RR+
22 rphalfcl 11858 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
2321, 22ax-mp 5 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  RR+
24 rpge0 11845 . . . . . . . . . 10  |-  ( ( 1  /  2 )  e.  RR+  ->  0  <_ 
( 1  /  2
) )
2523, 24ax-mp 5 . . . . . . . . 9  |-  0  <_  ( 1  /  2
)
26 absid 14036 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
2720, 25, 26mp2an 708 . . . . . . . 8  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
28 halflt1 11250 . . . . . . . 8  |-  ( 1  /  2 )  <  1
2927, 28eqbrtri 4674 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  <  1
3029a1i 11 . . . . . 6  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( abs `  (
1  /  2 ) )  <  1 )
3119, 30expcnv 14596 . . . . 5  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) )  ~~>  0 )
3217, 31syl5eqbr 4688 . . . 4  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^
n ) )  |`  ( ZZ>= `  0 )
)  ~~>  0 )
33 0z 11388 . . . . 5  |-  0  e.  ZZ
34 zex 11386 . . . . . . 7  |-  ZZ  e.  _V
3534mptex 6486 . . . . . 6  |-  ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^ n ) )  e.  _V
3635a1i 11 . . . . 5  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( n  e.  ZZ  |->  ( ( 1  / 
2 ) ^ n
) )  e.  _V )
37 climres 14306 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( n  e.  ZZ  |->  ( ( 1  / 
2 ) ^ n
) )  e.  _V )  ->  ( ( ( n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  |`  ( ZZ>= ` 
0 ) )  ~~>  0  <->  (
n  e.  ZZ  |->  ( ( 1  /  2
) ^ n ) )  ~~>  0 ) )
3833, 36, 37sylancr 695 . . . 4  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( ( ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^ n ) )  |`  ( ZZ>= `  0 )
)  ~~>  0  <->  ( n  e.  ZZ  |->  ( ( 1  /  2 ) ^
n ) )  ~~>  0 ) )
3932, 38mpbid 222 . . 3  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( n  e.  ZZ  |->  ( ( 1  / 
2 ) ^ n
) )  ~~>  0 )
401, 2, 3, 11, 39climi0 14243 . 2  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( 1  /  2 ) ^ k ) )  <  R )
411uztrn2 11705 . . . . . 6  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
42 rpexpcl 12879 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
4323, 6, 42sylancr 695 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
1  /  2 ) ^ k )  e.  RR+ )
44 rpre 11839 . . . . . . . . 9  |-  ( ( ( 1  /  2
) ^ k )  e.  RR+  ->  ( ( 1  /  2 ) ^ k )  e.  RR )
45 rpge0 11845 . . . . . . . . 9  |-  ( ( ( 1  /  2
) ^ k )  e.  RR+  ->  0  <_ 
( ( 1  / 
2 ) ^ k
) )
4644, 45absidd 14161 . . . . . . . 8  |-  ( ( ( 1  /  2
) ^ k )  e.  RR+  ->  ( abs `  ( ( 1  / 
2 ) ^ k
) )  =  ( ( 1  /  2
) ^ k ) )
4743, 46syl 17 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  k  e.  Z
)  ->  ( abs `  ( ( 1  / 
2 ) ^ k
) )  =  ( ( 1  /  2
) ^ k ) )
4847breq1d 4663 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  k  e.  Z
)  ->  ( ( abs `  ( ( 1  /  2 ) ^
k ) )  < 
R  <->  ( ( 1  /  2 ) ^
k )  <  R
) )
4941, 48sylan2 491 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  ->  ( ( abs `  ( ( 1  /  2 ) ^
k ) )  < 
R  <->  ( ( 1  /  2 ) ^
k )  <  R
) )
5049anassrs 680 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( 1  /  2 ) ^
k ) )  < 
R  <->  ( ( 1  /  2 ) ^
k )  <  R
) )
5150ralbidva 2985 . . 3  |-  ( ( ( M  e.  ZZ  /\  R  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( 1  / 
2 ) ^ k
) )  <  R  <->  A. k  e.  ( ZZ>= `  j ) ( ( 1  /  2 ) ^ k )  < 
R ) )
5251rexbidva 3049 . 2  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( 1  /  2
) ^ k ) )  <  R  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( 1  / 
2 ) ^ k
)  <  R )
)
5340, 52mpbid 222 1  |-  ( ( M  e.  ZZ  /\  R  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( 1  /  2
) ^ k )  <  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  iscmet3lem1  23089  iscmet3lem2  23090
  Copyright terms: Public domain W3C validator