| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version Unicode version | ||
| Description: Lemma for pnt 25303.
Closure for the constants used in the proof. For
comparison with Equation 10.6.27 of [Shapiro], p. 434, |
| Ref | Expression |
|---|---|
| pntlem1.r |
|
| pntlem1.a |
|
| pntlem1.b |
|
| pntlem1.l |
|
| pntlem1.d |
|
| pntlem1.f |
|
| Ref | Expression |
|---|---|
| pntlemd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 12235 |
. . . 4
| |
| 2 | pntlem1.l |
. . . 4
| |
| 3 | 1, 2 | sseldi 3601 |
. . 3
|
| 4 | eliooord 12233 |
. . . . 5
| |
| 5 | 2, 4 | syl 17 |
. . . 4
|
| 6 | 5 | simpld 475 |
. . 3
|
| 7 | 3, 6 | elrpd 11869 |
. 2
|
| 8 | pntlem1.d |
. . 3
| |
| 9 | pntlem1.a |
. . . 4
| |
| 10 | 1rp 11836 |
. . . 4
| |
| 11 | rpaddcl 11854 |
. . . 4
| |
| 12 | 9, 10, 11 | sylancl 694 |
. . 3
|
| 13 | 8, 12 | syl5eqel 2705 |
. 2
|
| 14 | pntlem1.f |
. . 3
| |
| 15 | 1re 10039 |
. . . . . . . 8
| |
| 16 | ltaddrp 11867 |
. . . . . . . 8
| |
| 17 | 15, 9, 16 | sylancr 695 |
. . . . . . 7
|
| 18 | 9 | rpcnd 11874 |
. . . . . . . . 9
|
| 19 | ax-1cn 9994 |
. . . . . . . . 9
| |
| 20 | addcom 10222 |
. . . . . . . . 9
| |
| 21 | 18, 19, 20 | sylancl 694 |
. . . . . . . 8
|
| 22 | 8, 21 | syl5eq 2668 |
. . . . . . 7
|
| 23 | 17, 22 | breqtrrd 4681 |
. . . . . 6
|
| 24 | 13 | recgt1d 11886 |
. . . . . 6
|
| 25 | 23, 24 | mpbid 222 |
. . . . 5
|
| 26 | 13 | rprecred 11883 |
. . . . . 6
|
| 27 | difrp 11868 |
. . . . . 6
| |
| 28 | 26, 15, 27 | sylancl 694 |
. . . . 5
|
| 29 | 25, 28 | mpbid 222 |
. . . 4
|
| 30 | 3nn0 11310 |
. . . . . . . . 9
| |
| 31 | 2nn 11185 |
. . . . . . . . 9
| |
| 32 | 30, 31 | decnncl 11518 |
. . . . . . . 8
|
| 33 | nnrp 11842 |
. . . . . . . 8
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . 7
|
| 35 | pntlem1.b |
. . . . . . 7
| |
| 36 | rpmulcl 11855 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | sylancr 695 |
. . . . . 6
|
| 38 | 7, 37 | rpdivcld 11889 |
. . . . 5
|
| 39 | 2z 11409 |
. . . . . 6
| |
| 40 | rpexpcl 12879 |
. . . . . 6
| |
| 41 | 13, 39, 40 | sylancl 694 |
. . . . 5
|
| 42 | 38, 41 | rpdivcld 11889 |
. . . 4
|
| 43 | 29, 42 | rpmulcld 11888 |
. . 3
|
| 44 | 14, 43 | syl5eqel 2705 |
. 2
|
| 45 | 7, 13, 44 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-ioo 12179 df-seq 12802 df-exp 12861 |
| This theorem is referenced by: pntlemc 25284 pntlema 25285 pntlemb 25286 pntlemq 25290 pntlemr 25291 pntlemj 25292 pntlemf 25294 pntlemo 25296 pntleml 25300 |
| Copyright terms: Public domain | W3C validator |