MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Structured version   Visualization version   Unicode version

Theorem psercn2 24177
Description: Since by pserulm 24176 the series converges uniformly, it is also continuous by ulmcn 24153. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
pserulm.h  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
pserulm.m  |-  ( ph  ->  M  e.  RR )
pserulm.l  |-  ( ph  ->  M  <  R )
pserulm.y  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
Assertion
Ref Expression
psercn2  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, n, r, x, y, A    i,
j, y, H    i, M, j, y    x, i, r    i, G, j, r, y    S, i, j, y    ph, i,
j, y
Allowed substitution hints:    ph( x, n, r)    A( i)    R( x, y, i, j, n, r)    S( x, n, r)    F( x, y, i, j, n, r)    G( x, n)    H( x, n, r)    M( x, n, r)

Proof of Theorem psercn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 11389 . 2  |-  ( ph  ->  0  e.  ZZ )
3 pserulm.y . . . . . . 7  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
4 cnvimass 5485 . . . . . . . 8  |-  ( `' abs " ( 0 [,] M ) ) 
C_  dom  abs
5 absf 14077 . . . . . . . . 9  |-  abs : CC
--> RR
65fdmi 6052 . . . . . . . 8  |-  dom  abs  =  CC
74, 6sseqtri 3637 . . . . . . 7  |-  ( `' abs " ( 0 [,] M ) ) 
C_  CC
83, 7syl6ss 3615 . . . . . 6  |-  ( ph  ->  S  C_  CC )
98adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  C_  CC )
109resmptd 5452 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
11 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  y  e.  CC )
12 elfznn0 12433 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... i )  ->  k  e.  NN0 )
1312adantl 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  k  e.  NN0 )
14 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1514pserval2 24165 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  y ) `  k
)  =  ( ( A `  k )  x.  ( y ^
k ) ) )
1611, 13, 15syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( G `
 y ) `  k )  =  ( ( A `  k
)  x.  ( y ^ k ) ) )
17 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
1817, 1syl6eleq 2711 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  ( ZZ>= `  0 )
)
1918adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  i  e.  ( ZZ>= `  0 )
)
20 pserf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN0 )  ->  A : NN0
--> CC )
2221ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2322adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
24 expcl 12878 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( y ^ k
)  e.  CC )
2524adantll 750 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( y ^
k )  e.  CC )
2623, 25mulcld 10060 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2712, 26sylan2 491 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2816, 19, 27fsumser 14461 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  sum_ k  e.  ( 0 ... i
) ( ( A `
 k )  x.  ( y ^ k
) )  =  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
2928mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  =  ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
30 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3130cnfldtopon 22586 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
33 fzfid 12772 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 0 ... i )  e. 
Fin )
3431a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
35 ffvelrn 6357 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
3621, 12, 35syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( A `  k )  e.  CC )
3734, 34, 36cnmptc 21465 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( A `  k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
3812adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  k  e.  NN0 )
3930expcn 22675 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( y  e.  CC  |->  ( y ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
4038, 39syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( y ^ k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4130mulcn 22670 . . . . . . . . . 10  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
4241a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
4334, 37, 40, 42cnmpt12f 21469 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( ( A `  k
)  x.  ( y ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4430, 32, 33, 43fsumcn 22673 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4530cncfcn1 22713 . . . . . . 7  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
4644, 45syl6eleqr 2712 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( CC -cn-> CC ) )
4729, 46eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC
-cn-> CC ) )
48 rescncf 22700 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC -cn-> CC )  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  |`  S )  e.  ( S -cn-> CC ) ) )
499, 47, 48sylc 65 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  e.  ( S -cn-> CC ) )
5010, 49eqeltrrd 2702 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  e.  ( S -cn-> CC ) )
51 pserulm.h . . 3  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
5250, 51fmptd 6385 . 2  |-  ( ph  ->  H : NN0 --> ( S
-cn-> CC ) )
53 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
54 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
55 pserulm.m . . 3  |-  ( ph  ->  M  e.  RR )
56 pserulm.l . . 3  |-  ( ph  ->  M  <  R )
5714, 53, 20, 54, 51, 55, 56, 3pserulm 24176 . 2  |-  ( ph  ->  H ( ~~> u `  S ) F )
581, 2, 52, 57ulmcn 24153 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074   NN0cn0 11292   ZZ>=cuz 11687   [,]cicc 12178   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416   TopOpenctopn 16082  ℂfldccnfld 19746  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ulm 24131
This theorem is referenced by:  psercn  24180
  Copyright terms: Public domain W3C validator