MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef01bndlem Structured version   Visualization version   Unicode version

Theorem ef01bndlem 14914
Description: Lemma for sin01bnd 14915 and cos01bnd 14916. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef01bndlem  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Distinct variable groups:    k, n, A    k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 9995 . . . . 5  |-  _i  e.  CC
2 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
3 1re 10039 . . . . . . . 8  |-  1  e.  RR
4 elioc2 12236 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
52, 3, 4mp2an 708 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
65simp1bi 1076 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
76recnd 10068 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
8 mulcl 10020 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
91, 7, 8sylancr 695 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
10 4nn0 11311 . . . 4  |-  4  e.  NN0
11 ef01bnd.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
1211eftlcl 14837 . . . 4  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
139, 10, 12sylancl 694 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
1413abscld 14175 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  e.  RR )
15 reexpcl 12877 . . . 4  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
166, 10, 15sylancl 694 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
17 4re 11097 . . . . 5  |-  4  e.  RR
1817, 3readdcli 10053 . . . 4  |-  ( 4  +  1 )  e.  RR
19 faccl 13070 . . . . . 6  |-  ( 4  e.  NN0  ->  ( ! `
 4 )  e.  NN )
2010, 19ax-mp 5 . . . . 5  |-  ( ! `
 4 )  e.  NN
21 4nn 11187 . . . . 5  |-  4  e.  NN
2220, 21nnmulcli 11044 . . . 4  |-  ( ( ! `  4 )  x.  4 )  e.  NN
23 nndivre 11056 . . . 4  |-  ( ( ( 4  +  1 )  e.  RR  /\  ( ( ! ` 
4 )  x.  4 )  e.  NN )  ->  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  e.  RR )
2418, 22, 23mp2an 708 . . 3  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  e.  RR
25 remulcl 10021 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR )  ->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  e.  RR )
2616, 24, 25sylancl 694 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  e.  RR )
27 6nn 11189 . . 3  |-  6  e.  NN
28 nndivre 11056 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
2916, 27, 28sylancl 694 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
30 eqid 2622 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( abs `  (
_i  x.  A )
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  ( _i  x.  A ) ) ^ n )  / 
( ! `  n
) ) )
31 eqid 2622 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  (
_i  x.  A )
) ^ 4 )  /  ( ! ` 
4 ) )  x.  ( ( 1  / 
( 4  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  ( _i  x.  A ) ) ^ 4 )  / 
( ! `  4
) )  x.  (
( 1  /  (
4  +  1 ) ) ^ n ) ) )
3221a1i 11 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  NN )
33 absmul 14034 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
341, 7, 33sylancr 695 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  ( ( abs `  _i )  x.  ( abs `  A ) ) )
35 absi 14026 . . . . . . . 8  |-  ( abs `  _i )  =  1
3635oveq1i 6660 . . . . . . 7  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
375simp2bi 1077 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
386, 37elrpd 11869 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR+ )
39 rpre 11839 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
40 rpge0 11845 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  0  <_  A )
4139, 40absidd 14161 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( abs `  A )  =  A )
4238, 41syl 17 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  A )  =  A )
4342oveq2d 6666 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
4436, 43syl5eq 2668 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  _i )  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
457mulid2d 10058 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  A )  =  A )
4634, 44, 453eqtrd 2660 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  A )
475simp3bi 1078 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
4846, 47eqbrtrd 4675 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  <_ 
1 )
4911, 30, 31, 32, 9, 48eftlub 14839 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( (
( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) ) )
5046oveq1d 6665 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
_i  x.  A )
) ^ 4 )  =  ( A ^
4 ) )
5150oveq1d 6665 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) )  =  ( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) ) )
5249, 51breqtrd 4679 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) ) )
53 3pos 11114 . . . . . . . . 9  |-  0  <  3
54 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
55 3re 11094 . . . . . . . . . 10  |-  3  e.  RR
56 5re 11099 . . . . . . . . . 10  |-  5  e.  RR
5754, 55, 56ltadd1i 10582 . . . . . . . . 9  |-  ( 0  <  3  <->  ( 0  +  5 )  < 
( 3  +  5 ) )
5853, 57mpbi 220 . . . . . . . 8  |-  ( 0  +  5 )  < 
( 3  +  5 )
59 5cn 11100 . . . . . . . . 9  |-  5  e.  CC
6059addid2i 10224 . . . . . . . 8  |-  ( 0  +  5 )  =  5
61 cu2 12963 . . . . . . . . 9  |-  ( 2 ^ 3 )  =  8
62 5p3e8 11166 . . . . . . . . 9  |-  ( 5  +  3 )  =  8
63 3nn 11186 . . . . . . . . . . 11  |-  3  e.  NN
6463nncni 11030 . . . . . . . . . 10  |-  3  e.  CC
6559, 64addcomi 10227 . . . . . . . . 9  |-  ( 5  +  3 )  =  ( 3  +  5 )
6661, 62, 653eqtr2ri 2651 . . . . . . . 8  |-  ( 3  +  5 )  =  ( 2 ^ 3 )
6758, 60, 663brtr3i 4682 . . . . . . 7  |-  5  <  ( 2 ^ 3 )
68 2re 11090 . . . . . . . 8  |-  2  e.  RR
69 1le2 11241 . . . . . . . 8  |-  1  <_  2
70 4z 11411 . . . . . . . . 9  |-  4  e.  ZZ
71 3lt4 11197 . . . . . . . . . 10  |-  3  <  4
7255, 17, 71ltleii 10160 . . . . . . . . 9  |-  3  <_  4
7363nnzi 11401 . . . . . . . . . 10  |-  3  e.  ZZ
7473eluz1i 11695 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
7570, 72, 74mpbir2an 955 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
76 leexp2a 12916 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  4  e.  ( ZZ>= `  3 )
)  ->  ( 2 ^ 3 )  <_ 
( 2 ^ 4 ) )
7768, 69, 75, 76mp3an 1424 . . . . . . 7  |-  ( 2 ^ 3 )  <_ 
( 2 ^ 4 )
78 8re 11105 . . . . . . . . 9  |-  8  e.  RR
7961, 78eqeltri 2697 . . . . . . . 8  |-  ( 2 ^ 3 )  e.  RR
80 2nn 11185 . . . . . . . . . 10  |-  2  e.  NN
81 nnexpcl 12873 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  4  e.  NN0 )  -> 
( 2 ^ 4 )  e.  NN )
8280, 10, 81mp2an 708 . . . . . . . . 9  |-  ( 2 ^ 4 )  e.  NN
8382nnrei 11029 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  RR
8456, 79, 83ltletri 10165 . . . . . . 7  |-  ( ( 5  <  ( 2 ^ 3 )  /\  ( 2 ^ 3 )  <_  ( 2 ^ 4 ) )  ->  5  <  (
2 ^ 4 ) )
8567, 77, 84mp2an 708 . . . . . 6  |-  5  <  ( 2 ^ 4 )
86 6re 11101 . . . . . . . 8  |-  6  e.  RR
8786, 83remulcli 10054 . . . . . . 7  |-  ( 6  x.  ( 2 ^ 4 ) )  e.  RR
88 6pos 11119 . . . . . . . 8  |-  0  <  6
8982nngt0i 11054 . . . . . . . 8  |-  0  <  ( 2 ^ 4 )
9086, 83, 88, 89mulgt0ii 10170 . . . . . . 7  |-  0  <  ( 6  x.  (
2 ^ 4 ) )
9156, 83, 87, 90ltdiv1ii 10953 . . . . . 6  |-  ( 5  <  ( 2 ^ 4 )  <->  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) ) )
9285, 91mpbi 220 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
93 df-5 11082 . . . . . 6  |-  5  =  ( 4  +  1 )
94 df-4 11081 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
9594fveq2i 6194 . . . . . . . . . 10  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
96 3nn0 11310 . . . . . . . . . . 11  |-  3  e.  NN0
97 facp1 13065 . . . . . . . . . . 11  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
9896, 97ax-mp 5 . . . . . . . . . 10  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
99 sq2 12960 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
10099, 94eqtr2i 2645 . . . . . . . . . . 11  |-  ( 3  +  1 )  =  ( 2 ^ 2 )
101100oveq2i 6661 . . . . . . . . . 10  |-  ( ( ! `  3 )  x.  ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
10295, 98, 1013eqtri 2648 . . . . . . . . 9  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
103102oveq1i 6660 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ( ! `
 3 )  x.  ( 2 ^ 2 ) )  x.  (
2 ^ 2 ) )
10499oveq2i 6661 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
4 )  x.  4 )
105 fac3 13067 . . . . . . . . . 10  |-  ( ! `
 3 )  =  6
106 6cn 11102 . . . . . . . . . 10  |-  6  e.  CC
107105, 106eqeltri 2697 . . . . . . . . 9  |-  ( ! `
 3 )  e.  CC
10817recni 10052 . . . . . . . . . 10  |-  4  e.  CC
10999, 108eqeltri 2697 . . . . . . . . 9  |-  ( 2 ^ 2 )  e.  CC
110107, 109, 109mulassi 10049 . . . . . . . 8  |-  ( ( ( ! `  3
)  x.  ( 2 ^ 2 ) )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
111103, 104, 1103eqtr3i 2652 . . . . . . 7  |-  ( ( ! `  4 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
112 2p2e4 11144 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
113112oveq2i 6661 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( 2 ^ 4 )
114 2cn 11091 . . . . . . . . . 10  |-  2  e.  CC
115 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
116 expadd 12902 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
117114, 115, 115, 116mp3an 1424 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
118113, 117eqtr3i 2646 . . . . . . . 8  |-  ( 2 ^ 4 )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
119118oveq2i 6661 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
120105oveq1i 6660 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( 6  x.  (
2 ^ 4 ) )
121111, 119, 1203eqtr2ri 2651 . . . . . 6  |-  ( 6  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
4 )  x.  4 )
12293, 121oveq12i 6662 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )
12382nncni 11030 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  CC
124123mulid2i 10043 . . . . . . 7  |-  ( 1  x.  ( 2 ^ 4 ) )  =  ( 2 ^ 4 )
125124oveq1i 6660 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
12682nnne0i 11055 . . . . . . . . 9  |-  ( 2 ^ 4 )  =/=  0
127123, 126dividi 10758 . . . . . . . 8  |-  ( ( 2 ^ 4 )  /  ( 2 ^ 4 ) )  =  1
128127oveq2i 6661 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  / 
6 )  x.  1 )
129 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
13086, 88gt0ne0ii 10564 . . . . . . . 8  |-  6  =/=  0
131129, 106, 123, 123, 130, 126divmuldivi 10785 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  x.  ( 2 ^ 4 ) )  /  (
6  x.  ( 2 ^ 4 ) ) )
13286, 130rereccli 10790 . . . . . . . . 9  |-  ( 1  /  6 )  e.  RR
133132recni 10052 . . . . . . . 8  |-  ( 1  /  6 )  e.  CC
134133mulid1i 10042 . . . . . . 7  |-  ( ( 1  /  6 )  x.  1 )  =  ( 1  /  6
)
135128, 131, 1343eqtr3i 2652 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
136125, 135eqtr3i 2646 . . . . 5  |-  ( ( 2 ^ 4 )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
13792, 122, 1363brtr3i 4682 . . . 4  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  < 
( 1  /  6
)
138 rpexpcl 12879 . . . . . 6  |-  ( ( A  e.  RR+  /\  4  e.  ZZ )  ->  ( A ^ 4 )  e.  RR+ )
13938, 70, 138sylancl 694 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR+ )
140 elrp 11834 . . . . . 6  |-  ( ( A ^ 4 )  e.  RR+  <->  ( ( A ^ 4 )  e.  RR  /\  0  < 
( A ^ 4 ) ) )
141 ltmul2 10874 . . . . . . 7  |-  ( ( ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR  /\  ( 1  /  6
)  e.  RR  /\  ( ( A ^
4 )  e.  RR  /\  0  <  ( A ^ 4 ) ) )  ->  ( (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
14224, 132, 141mp3an12 1414 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  0  <  ( A ^
4 ) )  -> 
( ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  <  (
1  /  6 )  <-> 
( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  / 
6 ) ) ) )
143140, 142sylbi 207 . . . . 5  |-  ( ( A ^ 4 )  e.  RR+  ->  ( ( ( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
144139, 143syl 17 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  <  ( 1  /  6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
145137, 144mpbii 223 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
14616recnd 10068 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  CC )
147 divrec 10701 . . . . 5  |-  ( ( ( A ^ 4 )  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
148106, 130, 147mp3an23 1416 . . . 4  |-  ( ( A ^ 4 )  e.  CC  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
149146, 148syl 17 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
150145, 149breqtrrd 4681 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  / 
6 ) )
15114, 26, 29, 52, 150lelttrd 10195 1  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   8c8 11076   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,]cioc 12176   ^cexp 12860   !cfa 13060   abscabs 13974   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioc 12180  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  sin01bnd  14915  cos01bnd  14916
  Copyright terms: Public domain W3C validator