MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergb Structured version   Visualization version   Unicode version

Theorem selbergb 25238
Description: Convert eventual boundedness in selberg 25237 to boundedness on  [ 1 , +oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selbergb  |-  E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  c
Distinct variable group:    n, c, x

Proof of Theorem selbergb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 10039 . . . . . . 7  |-  1  e.  RR
2 elicopnf 12269 . . . . . . 7  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
31, 2mp1i 13 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
43simprbda 653 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
54ex 450 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR ) )
65ssrdv 3609 . . 3  |-  ( T. 
->  ( 1 [,) +oo )  C_  RR )
71a1i 11 . . 3  |-  ( T. 
->  1  e.  RR )
8 fzfid 12772 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
9 elfznn 12370 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
109adantl 482 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
11 vmacl 24844 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1210, 11syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1310nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
1413relogcld 24369 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
154adantr 481 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
1615, 10nndivred 11069 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
17 chpcl 24850 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
1816, 17syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
1914, 18readdcld 10069 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  e.  RR )
2012, 19remulcld 10070 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  e.  RR )
218, 20fsumrecl 14465 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
22 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
2322a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  1  e.  RR+ )
243simplbda 654 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
254, 23, 24rpgecld 11911 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  RR+ )
2621, 25rerpdivcld 11903 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
27 2re 11090 . . . . . . 7  |-  2  e.  RR
2827a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  2  e.  RR )
2925relogcld 24369 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  ( log `  x )  e.  RR )
3028, 29remulcld 10070 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
3126, 30resubcld 10458 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  e.  RR )
3231recnd 10068 . . 3  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  e.  CC )
3325ex 450 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR+ )
)
3433ssrdv 3609 . . . 4  |-  ( T. 
->  ( 1 [,) +oo )  C_  RR+ )
35 selberg 25237 . . . . 5  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
3635a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  O(1) )
3734, 36o1res2 14294 . . 3  |-  ( T. 
->  ( x  e.  ( 1 [,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  O(1) )
38 fzfid 12772 . . . . 5  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 1 ... ( |_ `  y ) )  e.  Fin )
39 elfznn 12370 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  y
) )  ->  n  e.  NN )
4039adantl 482 . . . . . . 7  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  n  e.  NN )
4140, 11syl 17 . . . . . 6  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (Λ `  n
)  e.  RR )
4240nnrpd 11870 . . . . . . . 8  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  n  e.  RR+ )
4342relogcld 24369 . . . . . . 7  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( log `  n )  e.  RR )
44 simprl 794 . . . . . . . . . 10  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR )
4544adantr 481 . . . . . . . . 9  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  y  e.  RR )
4645, 40nndivred 11069 . . . . . . . 8  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( y  /  n )  e.  RR )
47 chpcl 24850 . . . . . . . 8  |-  ( ( y  /  n )  e.  RR  ->  (ψ `  ( y  /  n
) )  e.  RR )
4846, 47syl 17 . . . . . . 7  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
4943, 48readdcld 10069 . . . . . 6  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( y  /  n ) ) )  e.  RR )
5041, 49remulcld 10070 . . . . 5  |-  ( ( ( T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  e.  RR )
5138, 50fsumrecl 14465 . . . 4  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  e.  RR )
5227a1i 11 . . . . 5  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
2  e.  RR )
5322a1i 11 . . . . . . 7  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  e.  RR+ )
54 simprr 796 . . . . . . 7  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  <_  y )
5544, 53, 54rpgecld 11911 . . . . . 6  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR+ )
5655relogcld 24369 . . . . 5  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( log `  y
)  e.  RR )
5752, 56remulcld 10070 . . . 4  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 2  x.  ( log `  y ) )  e.  RR )
5851, 57readdcld 10069 . . 3  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  +  ( 2  x.  ( log `  y ) ) )  e.  RR )
5931adantr 481 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
6059recnd 10068 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
6160abscld 14175 . . . 4  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  RR )
6226adantr 481 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
6330adantr 481 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  RR )
6462, 63readdcld 10069 . . . 4  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) )  e.  RR )
65 fzfid 12772 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  y ) )  e. 
Fin )
6639adantl 482 . . . . . . . 8  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  NN )
6766, 11syl 17 . . . . . . 7  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (Λ `  n )  e.  RR )
6866nnrpd 11870 . . . . . . . . 9  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  RR+ )
6968relogcld 24369 . . . . . . . 8  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( log `  n
)  e.  RR )
70 simprll 802 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
7170adantr 481 . . . . . . . . . 10  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  y  e.  RR )
7271, 66nndivred 11069 . . . . . . . . 9  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( y  /  n )  e.  RR )
7372, 47syl 17 . . . . . . . 8  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
7469, 73readdcld 10069 . . . . . . 7  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( y  /  n
) ) )  e.  RR )
7567, 74remulcld 10070 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  RR )
7665, 75fsumrecl 14465 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  RR )
7727a1i 11 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
7825adantr 481 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
794adantr 481 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
80 simprr 796 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
8179, 70, 80ltled 10185 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
8270, 78, 81rpgecld 11911 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
8382relogcld 24369 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
8477, 83remulcld 10070 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  y
) )  e.  RR )
8576, 84readdcld 10069 . . . 4  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) )  e.  RR )
8662recnd 10068 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  CC )
8763recnd 10068 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
8886, 87abs2dif2d 14197 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) ) )
8921adantr 481 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
90 vmage0 24847 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
9110, 90syl 17 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
9210nnred 11035 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
9310nnge1d 11063 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
9492, 93logge0d 24376 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  n ) )
95 chpge0 24852 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  0  <_  (ψ `  ( x  /  n ) ) )
9616, 95syl 17 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
9714, 18, 94, 96addge0d 10603 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )
9812, 19, 91, 97mulge0d 10604 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
998, 20, 98fsumge0 14527 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
10099adantr 481 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
10189, 78, 100divge0d 11912 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x ) )
10262, 101absidd 14161 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )
10378relogcld 24369 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
104 2rp 11837 . . . . . . . . 9  |-  2  e.  RR+
105 rpge0 11845 . . . . . . . . 9  |-  ( 2  e.  RR+  ->  0  <_ 
2 )
106104, 105mp1i 13 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
10724adantr 481 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
10879, 107logge0d 24376 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
10977, 103, 106, 108mulge0d 10604 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  x.  ( log `  x ) ) )
11063, 109absidd 14161 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( 2  x.  ( log `  x ) ) )  =  ( 2  x.  ( log `  x
) ) )
111102, 110oveq12d 6668 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) ) )
11288, 111breqtrd 4679 . . . 4  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) ) )
11322a1i 11 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
11479adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  e.  RR )
115114, 66nndivred 11069 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  e.  RR )
116115, 17syl 17 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
11769, 116readdcld 10069 . . . . . . . . . 10  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n
) ) )  e.  RR )
11867, 117remulcld 10070 . . . . . . . . 9  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
11965, 118fsumrecl 14465 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
12066, 90syl 17 . . . . . . . . . 10  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (Λ `  n ) )
12166nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  RR )
12266nnge1d 11063 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  1  <_  n
)
123121, 122logge0d 24376 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  ( log `  n ) )
124115, 95syl 17 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
12569, 116, 123, 124addge0d 10603 . . . . . . . . . 10  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )
12667, 117, 120, 125mulge0d 10604 . . . . . . . . 9  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (
(Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
127 flword2 12614 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) ) )
12879, 70, 81, 127syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( |_ `  y )  e.  (
ZZ>= `  ( |_ `  x ) ) )
129 fzss2 12381 . . . . . . . . . 10  |-  ( ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) )  ->  ( 1 ... ( |_ `  x
) )  C_  (
1 ... ( |_ `  y ) ) )
130128, 129syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  y ) ) )
13165, 118, 126, 130fsumless 14528 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
13281adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  <_  y
)
133114, 71, 68, 132lediv1dd 11930 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  <_  (
y  /  n ) )
134 chpwordi 24883 . . . . . . . . . . . 12  |-  ( ( ( x  /  n
)  e.  RR  /\  ( y  /  n
)  e.  RR  /\  ( x  /  n
)  <_  ( y  /  n ) )  -> 
(ψ `  ( x  /  n ) )  <_ 
(ψ `  ( y  /  n ) ) )
135115, 72, 133, 134syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  <_  (ψ `  (
y  /  n ) ) )
136116, 73, 69, 135leadd2dd 10642 . . . . . . . . . 10  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n
) ) )  <_ 
( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )
137117, 74, 67, 120, 136lemul2ad 10964 . . . . . . . . 9  |-  ( ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  ( ( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
13865, 118, 75, 137fsumle 14531 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
13989, 119, 76, 131, 138letrd 10194 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
14089, 76, 113, 79, 100, 139, 107lediv12ad 11931 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  <_ 
( sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  / 
1 ) )
14176recnd 10068 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  CC )
142141div1d 10793 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  /  1 )  = 
sum_ n  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
143140, 142breqtrd 4679 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
14478, 82logled 24373 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
14581, 144mpbid 222 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
146103, 83, 77, 106, 145lemul2ad 10964 . . . . 5  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  <_  (
2  x.  ( log `  y ) ) )
14762, 63, 76, 84, 143, 146le2addd 10646 . . . 4  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
14861, 64, 85, 112, 147letrd 10194 . . 3  |-  ( ( ( T.  /\  x  e.  ( 1 [,) +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
1496, 7, 32, 37, 58, 148o1bddrp 14273 . 2  |-  ( T. 
->  E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  c
)
150149trud 1493 1  |-  E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  c
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   T. wtru 1484    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZ>=cuz 11687   RR+crp 11832   [,)cico 12177   ...cfz 12326   |_cfl 12591   abscabs 13974   O(1)co1 14217   sum_csu 14416   logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-vma 24824  df-chp 24825  df-mu 24827
This theorem is referenced by:  selberg4  25250  selbergsb  25264
  Copyright terms: Public domain W3C validator