MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem8 Structured version   Visualization version   Unicode version

Theorem bposlem8 25016
Description: Lemma for bpos 25018. Evaluate  F ( 6 4 ) and show it is less than  log 2. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
bposlem7.2  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
Assertion
Ref Expression
bposlem8  |-  ( ( F ` ; 6 4 )  e.  RR  /\  ( F `
; 6 4 )  < 
( log `  2
) )

Proof of Theorem bposlem8
StepHypRef Expression
1 6nn0 11313 . . . . 5  |-  6  e.  NN0
2 4nn 11187 . . . . 5  |-  4  e.  NN
31, 2decnncl 11518 . . . 4  |- ; 6 4  e.  NN
4 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( n  = ; 6 4  ->  ( sqr `  n )  =  ( sqr ` ; 6 4 ) )
5 8cn 11106 . . . . . . . . . . . . . . . . . 18  |-  8  e.  CC
65sqvali 12943 . . . . . . . . . . . . . . . . 17  |-  ( 8 ^ 2 )  =  ( 8  x.  8 )
7 8t8e64 11662 . . . . . . . . . . . . . . . . 17  |-  ( 8  x.  8 )  = ; 6
4
86, 7eqtri 2644 . . . . . . . . . . . . . . . 16  |-  ( 8 ^ 2 )  = ; 6
4
98fveq2i 6194 . . . . . . . . . . . . . . 15  |-  ( sqr `  ( 8 ^ 2 ) )  =  ( sqr ` ; 6 4 )
10 0re 10040 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
11 8re 11105 . . . . . . . . . . . . . . . . 17  |-  8  e.  RR
12 8pos 11121 . . . . . . . . . . . . . . . . 17  |-  0  <  8
1310, 11, 12ltleii 10160 . . . . . . . . . . . . . . . 16  |-  0  <_  8
1411sqrtsqi 14114 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  8  ->  ( sqr `  ( 8 ^ 2 ) )  =  8 )
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( sqr `  ( 8 ^ 2 ) )  =  8
169, 15eqtr3i 2646 . . . . . . . . . . . . . 14  |-  ( sqr ` ; 6 4 )  =  8
174, 16syl6eq 2672 . . . . . . . . . . . . 13  |-  ( n  = ; 6 4  ->  ( sqr `  n )  =  8 )
1817fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  = ; 6 4  ->  ( G `  ( sqr `  n ) )  =  ( G `  8
) )
19 8nn 11191 . . . . . . . . . . . . 13  |-  8  e.  NN
20 nnrp 11842 . . . . . . . . . . . . 13  |-  ( 8  e.  NN  ->  8  e.  RR+ )
21 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  8  ->  ( log `  x )  =  ( log `  8
) )
22 cu2 12963 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ^ 3 )  =  8
2322fveq2i 6194 . . . . . . . . . . . . . . . . . 18  |-  ( log `  ( 2 ^ 3 ) )  =  ( log `  8 )
24 2rp 11837 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  RR+
25 3z 11410 . . . . . . . . . . . . . . . . . . 19  |-  3  e.  ZZ
26 relogexp 24342 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  RR+  /\  3  e.  ZZ )  ->  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) ) )
2724, 25, 26mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) )
2823, 27eqtr3i 2646 . . . . . . . . . . . . . . . . 17  |-  ( log `  8 )  =  ( 3  x.  ( log `  2 ) )
2921, 28syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( x  =  8  ->  ( log `  x )  =  ( 3  x.  ( log `  2 ) ) )
30 id 22 . . . . . . . . . . . . . . . 16  |-  ( x  =  8  ->  x  =  8 )
3129, 30oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( x  =  8  ->  (
( log `  x
)  /  x )  =  ( ( 3  x.  ( log `  2
) )  /  8
) )
32 3cn 11095 . . . . . . . . . . . . . . . 16  |-  3  e.  CC
33 2nn 11185 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
34 nnrp 11842 . . . . . . . . . . . . . . . . . 18  |-  ( 2  e.  NN  ->  2  e.  RR+ )
35 relogcl 24322 . . . . . . . . . . . . . . . . . 18  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
3633, 34, 35mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ( log `  2 )  e.  RR
3736recni 10052 . . . . . . . . . . . . . . . 16  |-  ( log `  2 )  e.  CC
3819nnne0i 11055 . . . . . . . . . . . . . . . 16  |-  8  =/=  0
3932, 37, 5, 38div23i 10783 . . . . . . . . . . . . . . 15  |-  ( ( 3  x.  ( log `  2 ) )  /  8 )  =  ( ( 3  / 
8 )  x.  ( log `  2 ) )
4031, 39syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( x  =  8  ->  (
( log `  x
)  /  x )  =  ( ( 3  /  8 )  x.  ( log `  2
) ) )
41 bposlem7.2 . . . . . . . . . . . . . 14  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
42 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( 3  /  8 )  x.  ( log `  2
) )  e.  _V
4340, 41, 42fvmpt 6282 . . . . . . . . . . . . 13  |-  ( 8  e.  RR+  ->  ( G `
 8 )  =  ( ( 3  / 
8 )  x.  ( log `  2 ) ) )
4419, 20, 43mp2b 10 . . . . . . . . . . . 12  |-  ( G `
 8 )  =  ( ( 3  / 
8 )  x.  ( log `  2 ) )
4518, 44syl6eq 2672 . . . . . . . . . . 11  |-  ( n  = ; 6 4  ->  ( G `  ( sqr `  n ) )  =  ( ( 3  / 
8 )  x.  ( log `  2 ) ) )
4645oveq2d 6666 . . . . . . . . . 10  |-  ( n  = ; 6 4  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( sqr `  2
)  x.  ( ( 3  /  8 )  x.  ( log `  2
) ) ) )
47 sqrt2re 14980 . . . . . . . . . . . . 13  |-  ( sqr `  2 )  e.  RR
4847recni 10052 . . . . . . . . . . . 12  |-  ( sqr `  2 )  e.  CC
4932, 5, 38divcli 10767 . . . . . . . . . . . 12  |-  ( 3  /  8 )  e.  CC
5048, 49, 37mulassi 10049 . . . . . . . . . . 11  |-  ( ( ( sqr `  2
)  x.  ( 3  /  8 ) )  x.  ( log `  2
) )  =  ( ( sqr `  2
)  x.  ( ( 3  /  8 )  x.  ( log `  2
) ) )
51 4cn 11098 . . . . . . . . . . . . . . . 16  |-  4  e.  CC
5248, 51, 48mul12i 10231 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  2 )  x.  ( 4  x.  ( sqr `  2
) ) )  =  ( 4  x.  (
( sqr `  2
)  x.  ( sqr `  2 ) ) )
53 2re 11090 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
54 0le2 11111 . . . . . . . . . . . . . . . . 17  |-  0  <_  2
55 remsqsqrt 13997 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
)  x.  ( sqr `  2 ) )  =  2 )
5653, 54, 55mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( ( sqr `  2 )  x.  ( sqr `  2
) )  =  2
5756oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( 4  x.  ( ( sqr `  2 )  x.  ( sqr `  2
) ) )  =  ( 4  x.  2 )
58 4t2e8 11181 . . . . . . . . . . . . . . 15  |-  ( 4  x.  2 )  =  8
5952, 57, 583eqtri 2648 . . . . . . . . . . . . . 14  |-  ( ( sqr `  2 )  x.  ( 4  x.  ( sqr `  2
) ) )  =  8
6059oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  2
)  x.  3 )  /  ( ( sqr `  2 )  x.  ( 4  x.  ( sqr `  2 ) ) ) )  =  ( ( ( sqr `  2
)  x.  3 )  /  8 )
6151, 48mulcli 10045 . . . . . . . . . . . . . . 15  |-  ( 4  x.  ( sqr `  2
) )  e.  CC
62 nnrp 11842 . . . . . . . . . . . . . . . . . 18  |-  ( 4  e.  NN  ->  4  e.  RR+ )
632, 62ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  4  e.  RR+
64 rpsqrtcl 14005 . . . . . . . . . . . . . . . . . 18  |-  ( 2  e.  RR+  ->  ( sqr `  2 )  e.  RR+ )
6533, 34, 64mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ( sqr `  2 )  e.  RR+
66 rpmulcl 11855 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  RR+  /\  ( sqr `  2 )  e.  RR+ )  ->  ( 4  x.  ( sqr `  2
) )  e.  RR+ )
6763, 65, 66mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( 4  x.  ( sqr `  2
) )  e.  RR+
68 rpne0 11848 . . . . . . . . . . . . . . . 16  |-  ( ( 4  x.  ( sqr `  2 ) )  e.  RR+  ->  ( 4  x.  ( sqr `  2
) )  =/=  0
)
6967, 68ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 4  x.  ( sqr `  2
) )  =/=  0
70 rpne0 11848 . . . . . . . . . . . . . . . 16  |-  ( ( sqr `  2 )  e.  RR+  ->  ( sqr `  2 )  =/=  0 )
7124, 64, 70mp2b 10 . . . . . . . . . . . . . . 15  |-  ( sqr `  2 )  =/=  0
72 divcan5 10727 . . . . . . . . . . . . . . . 16  |-  ( ( 3  e.  CC  /\  ( ( 4  x.  ( sqr `  2
) )  e.  CC  /\  ( 4  x.  ( sqr `  2 ) )  =/=  0 )  /\  ( ( sqr `  2
)  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  ->  ( ( ( sqr `  2 )  x.  3 )  / 
( ( sqr `  2
)  x.  ( 4  x.  ( sqr `  2
) ) ) )  =  ( 3  / 
( 4  x.  ( sqr `  2 ) ) ) )
7332, 72mp3an1 1411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 4  x.  ( sqr `  2
) )  e.  CC  /\  ( 4  x.  ( sqr `  2 ) )  =/=  0 )  /\  ( ( sqr `  2
)  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  ->  ( ( ( sqr `  2 )  x.  3 )  / 
( ( sqr `  2
)  x.  ( 4  x.  ( sqr `  2
) ) ) )  =  ( 3  / 
( 4  x.  ( sqr `  2 ) ) ) )
7461, 69, 48, 71, 73mp4an 709 . . . . . . . . . . . . . 14  |-  ( ( ( sqr `  2
)  x.  3 )  /  ( ( sqr `  2 )  x.  ( 4  x.  ( sqr `  2 ) ) ) )  =  ( 3  /  ( 4  x.  ( sqr `  2
) ) )
75 4ne0 11117 . . . . . . . . . . . . . . 15  |-  4  =/=  0
76 divdiv1 10736 . . . . . . . . . . . . . . . 16  |-  ( ( 3  e.  CC  /\  ( 4  e.  CC  /\  4  =/=  0 )  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  -> 
( ( 3  / 
4 )  /  ( sqr `  2 ) )  =  ( 3  / 
( 4  x.  ( sqr `  2 ) ) ) )
7732, 76mp3an1 1411 . . . . . . . . . . . . . . 15  |-  ( ( ( 4  e.  CC  /\  4  =/=  0 )  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  -> 
( ( 3  / 
4 )  /  ( sqr `  2 ) )  =  ( 3  / 
( 4  x.  ( sqr `  2 ) ) ) )
7851, 75, 48, 71, 77mp4an 709 . . . . . . . . . . . . . 14  |-  ( ( 3  /  4 )  /  ( sqr `  2
) )  =  ( 3  /  ( 4  x.  ( sqr `  2
) ) )
7974, 78eqtr4i 2647 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  2
)  x.  3 )  /  ( ( sqr `  2 )  x.  ( 4  x.  ( sqr `  2 ) ) ) )  =  ( ( 3  /  4
)  /  ( sqr `  2 ) )
8048, 32, 5, 38divassi 10781 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  2
)  x.  3 )  /  8 )  =  ( ( sqr `  2
)  x.  ( 3  /  8 ) )
8160, 79, 803eqtr3ri 2653 . . . . . . . . . . . 12  |-  ( ( sqr `  2 )  x.  ( 3  / 
8 ) )  =  ( ( 3  / 
4 )  /  ( sqr `  2 ) )
8281oveq1i 6660 . . . . . . . . . . 11  |-  ( ( ( sqr `  2
)  x.  ( 3  /  8 ) )  x.  ( log `  2
) )  =  ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  x.  ( log `  2
) )
8350, 82eqtr3i 2646 . . . . . . . . . 10  |-  ( ( sqr `  2 )  x.  ( ( 3  /  8 )  x.  ( log `  2
) ) )  =  ( ( ( 3  /  4 )  / 
( sqr `  2
) )  x.  ( log `  2 ) )
8446, 83syl6eq 2672 . . . . . . . . 9  |-  ( n  = ; 6 4  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( ( 3  /  4 )  / 
( sqr `  2
) )  x.  ( log `  2 ) ) )
85 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( n  = ; 6 4  ->  (
n  /  2 )  =  (; 6 4  /  2
) )
86 df-6 11083 . . . . . . . . . . . . . . . . . 18  |-  6  =  ( 5  +  1 )
8786oveq2i 6661 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 6 )  =  ( 2 ^ (
5  +  1 ) )
88 2exp6 15795 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 6 )  = ; 6
4
89 2cn 11091 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
90 5nn0 11312 . . . . . . . . . . . . . . . . . 18  |-  5  e.  NN0
91 expp1 12867 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  5  e.  NN0 )  -> 
( 2 ^ (
5  +  1 ) )  =  ( ( 2 ^ 5 )  x.  2 ) )
9289, 90, 91mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ ( 5  +  1 ) )  =  ( ( 2 ^ 5 )  x.  2 )
9387, 88, 923eqtr3i 2652 . . . . . . . . . . . . . . . 16  |- ; 6 4  =  ( ( 2 ^ 5 )  x.  2 )
9493oveq1i 6660 . . . . . . . . . . . . . . 15  |-  (; 6 4  /  2
)  =  ( ( ( 2 ^ 5 )  x.  2 )  /  2 )
95 nnexpcl 12873 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  5  e.  NN0 )  -> 
( 2 ^ 5 )  e.  NN )
9633, 90, 95mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 5 )  e.  NN
9796nncni 11030 . . . . . . . . . . . . . . . 16  |-  ( 2 ^ 5 )  e.  CC
98 2ne0 11113 . . . . . . . . . . . . . . . 16  |-  2  =/=  0
9997, 89, 98divcan4i 10772 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ 5 )  x.  2 )  /  2 )  =  ( 2 ^ 5 )
10094, 99eqtri 2644 . . . . . . . . . . . . . 14  |-  (; 6 4  /  2
)  =  ( 2 ^ 5 )
10185, 100syl6eq 2672 . . . . . . . . . . . . 13  |-  ( n  = ; 6 4  ->  (
n  /  2 )  =  ( 2 ^ 5 ) )
102101fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  = ; 6 4  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( 2 ^ 5 ) ) )
103 nnrp 11842 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 5 )  e.  NN  ->  (
2 ^ 5 )  e.  RR+ )
104 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( 2 ^ 5 )  ->  ( log `  x )  =  ( log `  (
2 ^ 5 ) ) )
105 5nn 11188 . . . . . . . . . . . . . . . . . . 19  |-  5  e.  NN
106105nnzi 11401 . . . . . . . . . . . . . . . . . 18  |-  5  e.  ZZ
107 relogexp 24342 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  RR+  /\  5  e.  ZZ )  ->  ( log `  ( 2 ^ 5 ) )  =  ( 5  x.  ( log `  2 ) ) )
10824, 106, 107mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( log `  ( 2 ^ 5 ) )  =  ( 5  x.  ( log `  2 ) )
109104, 108syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 2 ^ 5 )  ->  ( log `  x )  =  ( 5  x.  ( log `  2 ) ) )
110 id 22 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 2 ^ 5 )  ->  x  =  ( 2 ^ 5 ) )
111109, 110oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 2 ^ 5 )  ->  (
( log `  x
)  /  x )  =  ( ( 5  x.  ( log `  2
) )  /  (
2 ^ 5 ) ) )
112 5cn 11100 . . . . . . . . . . . . . . . 16  |-  5  e.  CC
11396nnne0i 11055 . . . . . . . . . . . . . . . 16  |-  ( 2 ^ 5 )  =/=  0
114112, 37, 97, 113div23i 10783 . . . . . . . . . . . . . . 15  |-  ( ( 5  x.  ( log `  2 ) )  /  ( 2 ^ 5 ) )  =  ( ( 5  / 
( 2 ^ 5 ) )  x.  ( log `  2 ) )
115111, 114syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( x  =  ( 2 ^ 5 )  ->  (
( log `  x
)  /  x )  =  ( ( 5  /  ( 2 ^ 5 ) )  x.  ( log `  2
) ) )
116 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( 5  /  ( 2 ^ 5 ) )  x.  ( log `  2
) )  e.  _V
117115, 41, 116fvmpt 6282 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 5 )  e.  RR+  ->  ( G `
 ( 2 ^ 5 ) )  =  ( ( 5  / 
( 2 ^ 5 ) )  x.  ( log `  2 ) ) )
11896, 103, 117mp2b 10 . . . . . . . . . . . 12  |-  ( G `
 ( 2 ^ 5 ) )  =  ( ( 5  / 
( 2 ^ 5 ) )  x.  ( log `  2 ) )
119102, 118syl6eq 2672 . . . . . . . . . . 11  |-  ( n  = ; 6 4  ->  ( G `  ( n  /  2 ) )  =  ( ( 5  /  ( 2 ^ 5 ) )  x.  ( log `  2
) ) )
120119oveq2d 6666 . . . . . . . . . 10  |-  ( n  = ; 6 4  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( 9  /  4 )  x.  ( ( 5  / 
( 2 ^ 5 ) )  x.  ( log `  2 ) ) ) )
121 9cn 11108 . . . . . . . . . . . 12  |-  9  e.  CC
122121, 51, 75divcli 10767 . . . . . . . . . . 11  |-  ( 9  /  4 )  e.  CC
123112, 97, 113divcli 10767 . . . . . . . . . . 11  |-  ( 5  /  ( 2 ^ 5 ) )  e.  CC
124122, 123, 37mulassi 10049 . . . . . . . . . 10  |-  ( ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) )  x.  ( log `  2
) )  =  ( ( 9  /  4
)  x.  ( ( 5  /  ( 2 ^ 5 ) )  x.  ( log `  2
) ) )
125120, 124syl6eqr 2674 . . . . . . . . 9  |-  ( n  = ; 6 4  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  x.  ( log `  2
) ) )
12684, 125oveq12d 6668 . . . . . . . 8  |-  ( n  = ; 6 4  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  x.  ( log `  2 ) )  +  ( ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  x.  ( log `  2
) ) ) )
12732, 51, 75divcli 10767 . . . . . . . . . 10  |-  ( 3  /  4 )  e.  CC
128127, 48, 71divcli 10767 . . . . . . . . 9  |-  ( ( 3  /  4 )  /  ( sqr `  2
) )  e.  CC
129122, 123mulcli 10045 . . . . . . . . 9  |-  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  e.  CC
130128, 129, 37adddiri 10051 . . . . . . . 8  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  x.  ( log `  2
) )  =  ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  x.  ( log `  2 ) )  +  ( ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  x.  ( log `  2
) ) )
131126, 130syl6eqr 2674 . . . . . . 7  |-  ( n  = ; 6 4  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  x.  ( log `  2 ) ) )
132 oveq2 6658 . . . . . . . . . . 11  |-  ( n  = ; 6 4  ->  (
2  x.  n )  =  ( 2  x. ; 6
4 ) )
133132fveq2d 6195 . . . . . . . . . 10  |-  ( n  = ; 6 4  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x. ; 6 4 ) ) )
1343nnrei 11029 . . . . . . . . . . . 12  |- ; 6 4  e.  RR
1353nngt0i 11054 . . . . . . . . . . . . 13  |-  0  < ; 6
4
13610, 134, 135ltleii 10160 . . . . . . . . . . . 12  |-  0  <_ ; 6
4
13753, 134, 54, 136sqrtmulii 14126 . . . . . . . . . . 11  |-  ( sqr `  ( 2  x. ; 6 4 ) )  =  ( ( sqr `  2 )  x.  ( sqr ` ; 6 4 ) )
13816oveq2i 6661 . . . . . . . . . . 11  |-  ( ( sqr `  2 )  x.  ( sqr ` ; 6 4 ) )  =  ( ( sqr `  2 )  x.  8 )
139137, 138eqtri 2644 . . . . . . . . . 10  |-  ( sqr `  ( 2  x. ; 6 4 ) )  =  ( ( sqr `  2 )  x.  8 )
140133, 139syl6eq 2672 . . . . . . . . 9  |-  ( n  = ; 6 4  ->  ( sqr `  ( 2  x.  n ) )  =  ( ( sqr `  2
)  x.  8 ) )
141140oveq2d 6666 . . . . . . . 8  |-  ( n  = ; 6 4  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( log `  2
)  /  ( ( sqr `  2 )  x.  8 ) ) )
14248, 5mulcli 10045 . . . . . . . . . 10  |-  ( ( sqr `  2 )  x.  8 )  e.  CC
143 rpmulcl 11855 . . . . . . . . . . . 12  |-  ( ( ( sqr `  2
)  e.  RR+  /\  8  e.  RR+ )  ->  (
( sqr `  2
)  x.  8 )  e.  RR+ )
14465, 20, 143sylancr 695 . . . . . . . . . . 11  |-  ( 8  e.  NN  ->  (
( sqr `  2
)  x.  8 )  e.  RR+ )
145 rpne0 11848 . . . . . . . . . . 11  |-  ( ( ( sqr `  2
)  x.  8 )  e.  RR+  ->  ( ( sqr `  2 )  x.  8 )  =/=  0 )
14619, 144, 145mp2b 10 . . . . . . . . . 10  |-  ( ( sqr `  2 )  x.  8 )  =/=  0
147 divrec2 10702 . . . . . . . . . 10  |-  ( ( ( log `  2
)  e.  CC  /\  ( ( sqr `  2
)  x.  8 )  e.  CC  /\  (
( sqr `  2
)  x.  8 )  =/=  0 )  -> 
( ( log `  2
)  /  ( ( sqr `  2 )  x.  8 ) )  =  ( ( 1  /  ( ( sqr `  2 )  x.  8 ) )  x.  ( log `  2
) ) )
14837, 142, 146, 147mp3an 1424 . . . . . . . . 9  |-  ( ( log `  2 )  /  ( ( sqr `  2 )  x.  8 ) )  =  ( ( 1  / 
( ( sqr `  2
)  x.  8 ) )  x.  ( log `  2 ) )
14948, 5mulcomi 10046 . . . . . . . . . . . 12  |-  ( ( sqr `  2 )  x.  8 )  =  ( 8  x.  ( sqr `  2 ) )
150149oveq2i 6661 . . . . . . . . . . 11  |-  ( 1  /  ( ( sqr `  2 )  x.  8 ) )  =  ( 1  /  (
8  x.  ( sqr `  2 ) ) )
151 recdiv2 10738 . . . . . . . . . . . 12  |-  ( ( ( 8  e.  CC  /\  8  =/=  0 )  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  -> 
( ( 1  / 
8 )  /  ( sqr `  2 ) )  =  ( 1  / 
( 8  x.  ( sqr `  2 ) ) ) )
1525, 38, 48, 71, 151mp4an 709 . . . . . . . . . . 11  |-  ( ( 1  /  8 )  /  ( sqr `  2
) )  =  ( 1  /  ( 8  x.  ( sqr `  2
) ) )
153150, 152eqtr4i 2647 . . . . . . . . . 10  |-  ( 1  /  ( ( sqr `  2 )  x.  8 ) )  =  ( ( 1  / 
8 )  /  ( sqr `  2 ) )
154153oveq1i 6660 . . . . . . . . 9  |-  ( ( 1  /  ( ( sqr `  2 )  x.  8 ) )  x.  ( log `  2
) )  =  ( ( ( 1  / 
8 )  /  ( sqr `  2 ) )  x.  ( log `  2
) )
155148, 154eqtri 2644 . . . . . . . 8  |-  ( ( log `  2 )  /  ( ( sqr `  2 )  x.  8 ) )  =  ( ( ( 1  /  8 )  / 
( sqr `  2
) )  x.  ( log `  2 ) )
156141, 155syl6eq 2672 . . . . . . 7  |-  ( n  = ; 6 4  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( ( 1  /  8 )  / 
( sqr `  2
) )  x.  ( log `  2 ) ) )
157131, 156oveq12d 6668 . . . . . 6  |-  ( n  = ; 6 4  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  x.  ( log `  2
) )  +  ( ( ( 1  / 
8 )  /  ( sqr `  2 ) )  x.  ( log `  2
) ) ) )
158128, 129addcli 10044 . . . . . . 7  |-  ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  e.  CC
1595, 38reccli 10755 . . . . . . . 8  |-  ( 1  /  8 )  e.  CC
160159, 48, 71divcli 10767 . . . . . . 7  |-  ( ( 1  /  8 )  /  ( sqr `  2
) )  e.  CC
161158, 160, 37adddiri 10051 . . . . . 6  |-  ( ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  +  ( ( 1  /  8 )  /  ( sqr `  2
) ) )  x.  ( log `  2
) )  =  ( ( ( ( ( 3  /  4 )  /  ( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  x.  ( log `  2 ) )  +  ( ( ( 1  /  8 )  /  ( sqr `  2
) )  x.  ( log `  2 ) ) )
162157, 161syl6eqr 2674 . . . . 5  |-  ( n  = ; 6 4  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  x.  ( log `  2 ) ) )
163 bposlem7.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
164 ovex 6678 . . . . 5  |-  ( ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  +  ( ( 1  /  8 )  /  ( sqr `  2
) ) )  x.  ( log `  2
) )  e.  _V
165162, 163, 164fvmpt 6282 . . . 4  |-  (; 6 4  e.  NN  ->  ( F ` ; 6 4 )  =  ( ( ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  x.  ( log `  2 ) ) )
1663, 165ax-mp 5 . . 3  |-  ( F `
; 6 4 )  =  ( ( ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  x.  ( log `  2 ) )
167 3re 11094 . . . . . . . 8  |-  3  e.  RR
168 4re 11097 . . . . . . . 8  |-  4  e.  RR
169167, 168, 75redivcli 10792 . . . . . . 7  |-  ( 3  /  4 )  e.  RR
170169, 47, 71redivcli 10792 . . . . . 6  |-  ( ( 3  /  4 )  /  ( sqr `  2
) )  e.  RR
171 9re 11107 . . . . . . . 8  |-  9  e.  RR
172171, 168, 75redivcli 10792 . . . . . . 7  |-  ( 9  /  4 )  e.  RR
173 5re 11099 . . . . . . . 8  |-  5  e.  RR
17496nnrei 11029 . . . . . . . 8  |-  ( 2 ^ 5 )  e.  RR
175173, 174, 113redivcli 10792 . . . . . . 7  |-  ( 5  /  ( 2 ^ 5 ) )  e.  RR
176172, 175remulcli 10054 . . . . . 6  |-  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  e.  RR
177170, 176readdcli 10053 . . . . 5  |-  ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  e.  RR
17811, 38rereccli 10790 . . . . . 6  |-  ( 1  /  8 )  e.  RR
179178, 47, 71redivcli 10792 . . . . 5  |-  ( ( 1  /  8 )  /  ( sqr `  2
) )  e.  RR
180177, 179readdcli 10053 . . . 4  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  e.  RR
181180, 36remulcli 10054 . . 3  |-  ( ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  +  ( ( 1  /  8 )  /  ( sqr `  2
) ) )  x.  ( log `  2
) )  e.  RR
182166, 181eqeltri 2697 . 2  |-  ( F `
; 6 4 )  e.  RR
183128, 129, 160add32i 10259 . . . . . 6  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  =  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 1  /  8 )  / 
( sqr `  2
) ) )  +  ( ( 9  / 
4 )  x.  (
5  /  ( 2 ^ 5 ) ) ) )
184 6cn 11102 . . . . . . . . . . 11  |-  6  e.  CC
185 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
186184, 185, 5, 38divdiri 10782 . . . . . . . . . 10  |-  ( ( 6  +  1 )  /  8 )  =  ( ( 6  / 
8 )  +  ( 1  /  8 ) )
187 df-7 11084 . . . . . . . . . . 11  |-  7  =  ( 6  +  1 )
188187oveq1i 6660 . . . . . . . . . 10  |-  ( 7  /  8 )  =  ( ( 6  +  1 )  /  8
)
189 divcan5 10727 . . . . . . . . . . . . . 14  |-  ( ( 3  e.  CC  /\  ( 4  e.  CC  /\  4  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  3 )  /  (
2  x.  4 ) )  =  ( 3  /  4 ) )
19032, 189mp3an1 1411 . . . . . . . . . . . . 13  |-  ( ( ( 4  e.  CC  /\  4  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  3 )  /  (
2  x.  4 ) )  =  ( 3  /  4 ) )
19151, 75, 89, 98, 190mp4an 709 . . . . . . . . . . . 12  |-  ( ( 2  x.  3 )  /  ( 2  x.  4 ) )  =  ( 3  /  4
)
192 3t2e6 11179 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
19332, 89, 192mulcomli 10047 . . . . . . . . . . . . 13  |-  ( 2  x.  3 )  =  6
19451, 89, 58mulcomli 10047 . . . . . . . . . . . . 13  |-  ( 2  x.  4 )  =  8
195193, 194oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( 2  x.  3 )  /  ( 2  x.  4 ) )  =  ( 6  /  8
)
196191, 195eqtr3i 2646 . . . . . . . . . . 11  |-  ( 3  /  4 )  =  ( 6  /  8
)
197196oveq1i 6660 . . . . . . . . . 10  |-  ( ( 3  /  4 )  +  ( 1  / 
8 ) )  =  ( ( 6  / 
8 )  +  ( 1  /  8 ) )
198186, 188, 1973eqtr4ri 2655 . . . . . . . . 9  |-  ( ( 3  /  4 )  +  ( 1  / 
8 ) )  =  ( 7  /  8
)
199198oveq1i 6660 . . . . . . . 8  |-  ( ( ( 3  /  4
)  +  ( 1  /  8 ) )  /  ( sqr `  2
) )  =  ( ( 7  /  8
)  /  ( sqr `  2 ) )
200127, 159, 48, 71divdiri 10782 . . . . . . . 8  |-  ( ( ( 3  /  4
)  +  ( 1  /  8 ) )  /  ( sqr `  2
) )  =  ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 1  /  8 )  / 
( sqr `  2
) ) )
201 7cn 11104 . . . . . . . . 9  |-  7  e.  CC
202201, 5, 48, 38, 71divdiv32i 10780 . . . . . . . 8  |-  ( ( 7  /  8 )  /  ( sqr `  2
) )  =  ( ( 7  /  ( sqr `  2 ) )  /  8 )
203199, 200, 2023eqtr3i 2652 . . . . . . 7  |-  ( ( ( 3  /  4
)  /  ( sqr `  2 ) )  +  ( ( 1  /  8 )  / 
( sqr `  2
) ) )  =  ( ( 7  / 
( sqr `  2
) )  /  8
)
204203oveq1i 6660 . . . . . 6  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 1  /  8 )  / 
( sqr `  2
) ) )  +  ( ( 9  / 
4 )  x.  (
5  /  ( 2 ^ 5 ) ) ) )  =  ( ( ( 7  / 
( sqr `  2
) )  /  8
)  +  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) ) )
205183, 204eqtri 2644 . . . . 5  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  =  ( ( ( 7  /  ( sqr `  2 ) )  /  8 )  +  ( ( 9  / 
4 )  x.  (
5  /  ( 2 ^ 5 ) ) ) )
206 4nn0 11311 . . . . . . . . . . . 12  |-  4  e.  NN0
207 9nn0 11316 . . . . . . . . . . . 12  |-  9  e.  NN0
208 0nn0 11307 . . . . . . . . . . . 12  |-  0  e.  NN0
209 9lt10 11673 . . . . . . . . . . . 12  |-  9  < ; 1
0
210 4lt5 11200 . . . . . . . . . . . 12  |-  4  <  5
211206, 90, 207, 208, 209, 210decltc 11532 . . . . . . . . . . 11  |- ; 4 9  < ; 5 0
212 7t7e49 11653 . . . . . . . . . . 11  |-  ( 7  x.  7 )  = ; 4
9
21356oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( ( sqr `  2
)  x.  ( sqr `  2 ) )  x.  ( 5  x.  5 ) )  =  ( 2  x.  (
5  x.  5 ) )
21448, 48, 112, 112mul4i 10233 . . . . . . . . . . . 12  |-  ( ( ( sqr `  2
)  x.  ( sqr `  2 ) )  x.  ( 5  x.  5 ) )  =  ( ( ( sqr `  2 )  x.  5 )  x.  (
( sqr `  2
)  x.  5 ) )
215 5t2e10 11634 . . . . . . . . . . . . . . 15  |-  ( 5  x.  2 )  = ; 1
0
216112, 89, 215mulcomli 10047 . . . . . . . . . . . . . 14  |-  ( 2  x.  5 )  = ; 1
0
217216oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2  x.  5 )  x.  5 )  =  (; 1 0  x.  5 )
21889, 112, 112mulassi 10049 . . . . . . . . . . . . 13  |-  ( ( 2  x.  5 )  x.  5 )  =  ( 2  x.  (
5  x.  5 ) )
21990dec0u 11520 . . . . . . . . . . . . 13  |-  (; 1 0  x.  5 )  = ; 5 0
220217, 218, 2193eqtr3i 2652 . . . . . . . . . . . 12  |-  ( 2  x.  ( 5  x.  5 ) )  = ; 5
0
221213, 214, 2203eqtr3i 2652 . . . . . . . . . . 11  |-  ( ( ( sqr `  2
)  x.  5 )  x.  ( ( sqr `  2 )  x.  5 ) )  = ; 5
0
222211, 212, 2213brtr4i 4683 . . . . . . . . . 10  |-  ( 7  x.  7 )  < 
( ( ( sqr `  2 )  x.  5 )  x.  (
( sqr `  2
)  x.  5 ) )
223 7re 11103 . . . . . . . . . . . 12  |-  7  e.  RR
224 7pos 11120 . . . . . . . . . . . 12  |-  0  <  7
22510, 223, 224ltleii 10160 . . . . . . . . . . 11  |-  0  <_  7
226 nnrp 11842 . . . . . . . . . . . . . 14  |-  ( 5  e.  NN  ->  5  e.  RR+ )
227105, 226ax-mp 5 . . . . . . . . . . . . 13  |-  5  e.  RR+
228 rpmulcl 11855 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  2
)  e.  RR+  /\  5  e.  RR+ )  ->  (
( sqr `  2
)  x.  5 )  e.  RR+ )
22965, 227, 228mp2an 708 . . . . . . . . . . . 12  |-  ( ( sqr `  2 )  x.  5 )  e.  RR+
230 rpge0 11845 . . . . . . . . . . . 12  |-  ( ( ( sqr `  2
)  x.  5 )  e.  RR+  ->  0  <_ 
( ( sqr `  2
)  x.  5 ) )
231229, 230ax-mp 5 . . . . . . . . . . 11  |-  0  <_  ( ( sqr `  2
)  x.  5 )
232 rpre 11839 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  2
)  x.  5 )  e.  RR+  ->  ( ( sqr `  2 )  x.  5 )  e.  RR )
233229, 232ax-mp 5 . . . . . . . . . . . 12  |-  ( ( sqr `  2 )  x.  5 )  e.  RR
234223, 233lt2msqi 10936 . . . . . . . . . . 11  |-  ( ( 0  <_  7  /\  0  <_  ( ( sqr `  2 )  x.  5 ) )  -> 
( 7  <  (
( sqr `  2
)  x.  5 )  <-> 
( 7  x.  7 )  <  ( ( ( sqr `  2
)  x.  5 )  x.  ( ( sqr `  2 )  x.  5 ) ) ) )
235225, 231, 234mp2an 708 . . . . . . . . . 10  |-  ( 7  <  ( ( sqr `  2 )  x.  5 )  <->  ( 7  x.  7 )  < 
( ( ( sqr `  2 )  x.  5 )  x.  (
( sqr `  2
)  x.  5 ) ) )
236222, 235mpbir 221 . . . . . . . . 9  |-  7  <  ( ( sqr `  2
)  x.  5 )
237 rpgt0 11844 . . . . . . . . . . 11  |-  ( ( sqr `  2 )  e.  RR+  ->  0  < 
( sqr `  2
) )
23824, 64, 237mp2b 10 . . . . . . . . . 10  |-  0  <  ( sqr `  2
)
239 ltdivmul 10898 . . . . . . . . . . 11  |-  ( ( 7  e.  RR  /\  5  e.  RR  /\  (
( sqr `  2
)  e.  RR  /\  0  <  ( sqr `  2
) ) )  -> 
( ( 7  / 
( sqr `  2
) )  <  5  <->  7  <  ( ( sqr `  2 )  x.  5 ) ) )
240223, 173, 239mp3an12 1414 . . . . . . . . . 10  |-  ( ( ( sqr `  2
)  e.  RR  /\  0  <  ( sqr `  2
) )  ->  (
( 7  /  ( sqr `  2 ) )  <  5  <->  7  <  ( ( sqr `  2
)  x.  5 ) ) )
24147, 238, 240mp2an 708 . . . . . . . . 9  |-  ( ( 7  /  ( sqr `  2 ) )  <  5  <->  7  <  ( ( sqr `  2
)  x.  5 ) )
242236, 241mpbir 221 . . . . . . . 8  |-  ( 7  /  ( sqr `  2
) )  <  5
243223, 47, 71redivcli 10792 . . . . . . . . 9  |-  ( 7  /  ( sqr `  2
) )  e.  RR
244243, 173, 11, 12ltdiv1ii 10953 . . . . . . . 8  |-  ( ( 7  /  ( sqr `  2 ) )  <  5  <->  ( (
7  /  ( sqr `  2 ) )  /  8 )  < 
( 5  /  8
) )
245242, 244mpbi 220 . . . . . . 7  |-  ( ( 7  /  ( sqr `  2 ) )  /  8 )  < 
( 5  /  8
)
246 divsubdir 10721 . . . . . . . . . . 11  |-  ( ( 8  e.  CC  /\  3  e.  CC  /\  (
8  e.  CC  /\  8  =/=  0 ) )  ->  ( ( 8  -  3 )  / 
8 )  =  ( ( 8  /  8
)  -  ( 3  /  8 ) ) )
2475, 32, 246mp3an12 1414 . . . . . . . . . 10  |-  ( ( 8  e.  CC  /\  8  =/=  0 )  -> 
( ( 8  -  3 )  /  8
)  =  ( ( 8  /  8 )  -  ( 3  / 
8 ) ) )
2485, 38, 247mp2an 708 . . . . . . . . 9  |-  ( ( 8  -  3 )  /  8 )  =  ( ( 8  / 
8 )  -  (
3  /  8 ) )
249 5p3e8 11166 . . . . . . . . . . . 12  |-  ( 5  +  3 )  =  8
250249oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 5  +  3 )  -  3 )  =  ( 8  -  3 )
251112, 32pncan3oi 10297 . . . . . . . . . . 11  |-  ( ( 5  +  3 )  -  3 )  =  5
252250, 251eqtr3i 2646 . . . . . . . . . 10  |-  ( 8  -  3 )  =  5
253252oveq1i 6660 . . . . . . . . 9  |-  ( ( 8  -  3 )  /  8 )  =  ( 5  /  8
)
2545, 38dividi 10758 . . . . . . . . . 10  |-  ( 8  /  8 )  =  1
255254oveq1i 6660 . . . . . . . . 9  |-  ( ( 8  /  8 )  -  ( 3  / 
8 ) )  =  ( 1  -  (
3  /  8 ) )
256248, 253, 2553eqtr3ri 2653 . . . . . . . 8  |-  ( 1  -  ( 3  / 
8 ) )  =  ( 5  /  8
)
257 5lt8 11217 . . . . . . . . . . . . 13  |-  5  <  8
25811, 173remulcli 10054 . . . . . . . . . . . . . 14  |-  ( 8  x.  5 )  e.  RR
259173, 11, 258ltadd2i 10168 . . . . . . . . . . . . 13  |-  ( 5  <  8  <->  ( (
8  x.  5 )  +  5 )  < 
( ( 8  x.  5 )  +  8 ) )
260257, 259mpbi 220 . . . . . . . . . . . 12  |-  ( ( 8  x.  5 )  +  5 )  < 
( ( 8  x.  5 )  +  8 )
261 df-9 11086 . . . . . . . . . . . . . 14  |-  9  =  ( 8  +  1 )
262261oveq1i 6660 . . . . . . . . . . . . 13  |-  ( 9  x.  5 )  =  ( ( 8  +  1 )  x.  5 )
2635, 185, 112adddiri 10051 . . . . . . . . . . . . 13  |-  ( ( 8  +  1 )  x.  5 )  =  ( ( 8  x.  5 )  +  ( 1  x.  5 ) )
264112mulid2i 10043 . . . . . . . . . . . . . 14  |-  ( 1  x.  5 )  =  5
265264oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( 8  x.  5 )  +  ( 1  x.  5 ) )  =  ( ( 8  x.  5 )  +  5 )
266262, 263, 2653eqtri 2648 . . . . . . . . . . . 12  |-  ( 9  x.  5 )  =  ( ( 8  x.  5 )  +  5 )
26786oveq2i 6661 . . . . . . . . . . . . 13  |-  ( 8  x.  6 )  =  ( 8  x.  (
5  +  1 ) )
2685, 112, 185adddii 10050 . . . . . . . . . . . . 13  |-  ( 8  x.  ( 5  +  1 ) )  =  ( ( 8  x.  5 )  +  ( 8  x.  1 ) )
2695mulid1i 10042 . . . . . . . . . . . . . 14  |-  ( 8  x.  1 )  =  8
270269oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( 8  x.  5 )  +  ( 8  x.  1 ) )  =  ( ( 8  x.  5 )  +  8 )
271267, 268, 2703eqtri 2648 . . . . . . . . . . . 12  |-  ( 8  x.  6 )  =  ( ( 8  x.  5 )  +  8 )
272260, 266, 2713brtr4i 4683 . . . . . . . . . . 11  |-  ( 9  x.  5 )  < 
( 8  x.  6 )
273171, 173remulcli 10054 . . . . . . . . . . . 12  |-  ( 9  x.  5 )  e.  RR
274 6re 11101 . . . . . . . . . . . . 13  |-  6  e.  RR
27511, 274remulcli 10054 . . . . . . . . . . . 12  |-  ( 8  x.  6 )  e.  RR
276168, 174remulcli 10054 . . . . . . . . . . . 12  |-  ( 4  x.  ( 2 ^ 5 ) )  e.  RR
2772, 96nnmulcli 11044 . . . . . . . . . . . . 13  |-  ( 4  x.  ( 2 ^ 5 ) )  e.  NN
278277nngt0i 11054 . . . . . . . . . . . 12  |-  0  <  ( 4  x.  (
2 ^ 5 ) )
279273, 275, 276, 278ltdiv1ii 10953 . . . . . . . . . . 11  |-  ( ( 9  x.  5 )  <  ( 8  x.  6 )  <->  ( (
9  x.  5 )  /  ( 4  x.  ( 2 ^ 5 ) ) )  < 
( ( 8  x.  6 )  /  (
4  x.  ( 2 ^ 5 ) ) ) )
280272, 279mpbi 220 . . . . . . . . . 10  |-  ( ( 9  x.  5 )  /  ( 4  x.  ( 2 ^ 5 ) ) )  < 
( ( 8  x.  6 )  /  (
4  x.  ( 2 ^ 5 ) ) )
281121, 51, 112, 97, 75, 113divmuldivi 10785 . . . . . . . . . 10  |-  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  =  ( ( 9  x.  5 )  /  (
4  x.  ( 2 ^ 5 ) ) )
282 nnexpcl 12873 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  4  e.  NN0 )  -> 
( 2 ^ 4 )  e.  NN )
28333, 206, 282mp2an 708 . . . . . . . . . . . . 13  |-  ( 2 ^ 4 )  e.  NN
284283nncni 11030 . . . . . . . . . . . 12  |-  ( 2 ^ 4 )  e.  CC
285283nnne0i 11055 . . . . . . . . . . . 12  |-  ( 2 ^ 4 )  =/=  0
286 divcan5 10727 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  ( 8  e.  CC  /\  8  =/=  0 )  /\  ( ( 2 ^ 4 )  e.  CC  /\  ( 2 ^ 4 )  =/=  0 ) )  -> 
( ( ( 2 ^ 4 )  x.  3 )  /  (
( 2 ^ 4 )  x.  8 ) )  =  ( 3  /  8 ) )
28732, 286mp3an1 1411 . . . . . . . . . . . 12  |-  ( ( ( 8  e.  CC  /\  8  =/=  0 )  /\  ( ( 2 ^ 4 )  e.  CC  /\  ( 2 ^ 4 )  =/=  0 ) )  -> 
( ( ( 2 ^ 4 )  x.  3 )  /  (
( 2 ^ 4 )  x.  8 ) )  =  ( 3  /  8 ) )
2885, 38, 284, 285, 287mp4an 709 . . . . . . . . . . 11  |-  ( ( ( 2 ^ 4 )  x.  3 )  /  ( ( 2 ^ 4 )  x.  8 ) )  =  ( 3  /  8
)
289 df-4 11081 . . . . . . . . . . . . . . . 16  |-  4  =  ( 3  +  1 )
290289oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( 2 ^ 4 )  =  ( 2 ^ (
3  +  1 ) )
291 3nn0 11310 . . . . . . . . . . . . . . . 16  |-  3  e.  NN0
292 expp1 12867 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  3  e.  NN0 )  -> 
( 2 ^ (
3  +  1 ) )  =  ( ( 2 ^ 3 )  x.  2 ) )
29389, 291, 292mp2an 708 . . . . . . . . . . . . . . 15  |-  ( 2 ^ ( 3  +  1 ) )  =  ( ( 2 ^ 3 )  x.  2 )
29422oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( 2 ^ 3 )  x.  2 )  =  ( 8  x.  2 )
295290, 293, 2943eqtri 2648 . . . . . . . . . . . . . 14  |-  ( 2 ^ 4 )  =  ( 8  x.  2 )
296295oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 4 )  x.  3 )  =  ( ( 8  x.  2 )  x.  3 )
2975, 89, 32mulassi 10049 . . . . . . . . . . . . 13  |-  ( ( 8  x.  2 )  x.  3 )  =  ( 8  x.  (
2  x.  3 ) )
298193oveq2i 6661 . . . . . . . . . . . . 13  |-  ( 8  x.  ( 2  x.  3 ) )  =  ( 8  x.  6 )
299296, 297, 2983eqtri 2648 . . . . . . . . . . . 12  |-  ( ( 2 ^ 4 )  x.  3 )  =  ( 8  x.  6 )
300 4p3e7 11163 . . . . . . . . . . . . . . . 16  |-  ( 4  +  3 )  =  7
301 5p2e7 11165 . . . . . . . . . . . . . . . 16  |-  ( 5  +  2 )  =  7
302112, 89addcomi 10227 . . . . . . . . . . . . . . . 16  |-  ( 5  +  2 )  =  ( 2  +  5 )
303300, 301, 3023eqtr2i 2650 . . . . . . . . . . . . . . 15  |-  ( 4  +  3 )  =  ( 2  +  5 )
304303oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( 2 ^ ( 4  +  3 ) )  =  ( 2 ^ (
2  +  5 ) )
305 expadd 12902 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  4  e.  NN0  /\  3  e.  NN0 )  ->  (
2 ^ ( 4  +  3 ) )  =  ( ( 2 ^ 4 )  x.  ( 2 ^ 3 ) ) )
30689, 206, 291, 305mp3an 1424 . . . . . . . . . . . . . 14  |-  ( 2 ^ ( 4  +  3 ) )  =  ( ( 2 ^ 4 )  x.  (
2 ^ 3 ) )
307 2nn0 11309 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
308 expadd 12902 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  5  e.  NN0 )  ->  (
2 ^ ( 2  +  5 ) )  =  ( ( 2 ^ 2 )  x.  ( 2 ^ 5 ) ) )
30989, 307, 90, 308mp3an 1424 . . . . . . . . . . . . . 14  |-  ( 2 ^ ( 2  +  5 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 5 ) )
310304, 306, 3093eqtr3i 2652 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 4 )  x.  ( 2 ^ 3 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 5 ) )
31122oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 4 )  x.  ( 2 ^ 3 ) )  =  ( ( 2 ^ 4 )  x.  8 )
312 sq2 12960 . . . . . . . . . . . . . 14  |-  ( 2 ^ 2 )  =  4
313312oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 )  x.  ( 2 ^ 5 ) )  =  ( 4  x.  (
2 ^ 5 ) )
314310, 311, 3133eqtr3i 2652 . . . . . . . . . . . 12  |-  ( ( 2 ^ 4 )  x.  8 )  =  ( 4  x.  (
2 ^ 5 ) )
315299, 314oveq12i 6662 . . . . . . . . . . 11  |-  ( ( ( 2 ^ 4 )  x.  3 )  /  ( ( 2 ^ 4 )  x.  8 ) )  =  ( ( 8  x.  6 )  /  (
4  x.  ( 2 ^ 5 ) ) )
316288, 315eqtr3i 2646 . . . . . . . . . 10  |-  ( 3  /  8 )  =  ( ( 8  x.  6 )  /  (
4  x.  ( 2 ^ 5 ) ) )
317280, 281, 3163brtr4i 4683 . . . . . . . . 9  |-  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) )  < 
( 3  /  8
)
318167, 11, 38redivcli 10792 . . . . . . . . . 10  |-  ( 3  /  8 )  e.  RR
319 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
320 ltsub2 10525 . . . . . . . . . 10  |-  ( ( ( ( 9  / 
4 )  x.  (
5  /  ( 2 ^ 5 ) ) )  e.  RR  /\  ( 3  /  8
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) )  <  (
3  /  8 )  <-> 
( 1  -  (
3  /  8 ) )  <  ( 1  -  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) ) ) )
321176, 318, 319, 320mp3an 1424 . . . . . . . . 9  |-  ( ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) )  <  ( 3  / 
8 )  <->  ( 1  -  ( 3  / 
8 ) )  < 
( 1  -  (
( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) ) )
322317, 321mpbi 220 . . . . . . . 8  |-  ( 1  -  ( 3  / 
8 ) )  < 
( 1  -  (
( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )
323256, 322eqbrtrri 4676 . . . . . . 7  |-  ( 5  /  8 )  < 
( 1  -  (
( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )
324243, 11, 38redivcli 10792 . . . . . . . 8  |-  ( ( 7  /  ( sqr `  2 ) )  /  8 )  e.  RR
325173, 11, 38redivcli 10792 . . . . . . . 8  |-  ( 5  /  8 )  e.  RR
326319, 176resubcli 10343 . . . . . . . 8  |-  ( 1  -  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  e.  RR
327324, 325, 326lttri 10163 . . . . . . 7  |-  ( ( ( ( 7  / 
( sqr `  2
) )  /  8
)  <  ( 5  /  8 )  /\  ( 5  /  8
)  <  ( 1  -  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) ) )  ->  ( ( 7  /  ( sqr `  2
) )  /  8
)  <  ( 1  -  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) ) )
328245, 323, 327mp2an 708 . . . . . 6  |-  ( ( 7  /  ( sqr `  2 ) )  /  8 )  < 
( 1  -  (
( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )
329324, 176, 319ltaddsubi 10589 . . . . . 6  |-  ( ( ( ( 7  / 
( sqr `  2
) )  /  8
)  +  ( ( 9  /  4 )  x.  ( 5  / 
( 2 ^ 5 ) ) ) )  <  1  <->  ( (
7  /  ( sqr `  2 ) )  /  8 )  < 
( 1  -  (
( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) ) )
330328, 329mpbir 221 . . . . 5  |-  ( ( ( 7  /  ( sqr `  2 ) )  /  8 )  +  ( ( 9  / 
4 )  x.  (
5  /  ( 2 ^ 5 ) ) ) )  <  1
331205, 330eqbrtri 4674 . . . 4  |-  ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  <  1
332 1lt2 11194 . . . . . . 7  |-  1  <  2
333 rplogcl 24350 . . . . . . 7  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
33453, 332, 333mp2an 708 . . . . . 6  |-  ( log `  2 )  e.  RR+
335 rpgt0 11844 . . . . . 6  |-  ( ( log `  2 )  e.  RR+  ->  0  < 
( log `  2
) )
336334, 335ax-mp 5 . . . . 5  |-  0  <  ( log `  2
)
337180, 319, 36, 336ltmul1ii 10952 . . . 4  |-  ( ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  +  ( ( 1  /  8 )  /  ( sqr `  2
) ) )  <  1  <->  ( ( ( ( ( 3  / 
4 )  /  ( sqr `  2 ) )  +  ( ( 9  /  4 )  x.  ( 5  /  (
2 ^ 5 ) ) ) )  +  ( ( 1  / 
8 )  /  ( sqr `  2 ) ) )  x.  ( log `  2 ) )  <  ( 1  x.  ( log `  2
) ) )
338331, 337mpbi 220 . . 3  |-  ( ( ( ( ( 3  /  4 )  / 
( sqr `  2
) )  +  ( ( 9  /  4
)  x.  ( 5  /  ( 2 ^ 5 ) ) ) )  +  ( ( 1  /  8 )  /  ( sqr `  2
) ) )  x.  ( log `  2
) )  <  (
1  x.  ( log `  2 ) )
33937mulid2i 10043 . . . 4  |-  ( 1  x.  ( log `  2
) )  =  ( log `  2 )
340339eqcomi 2631 . . 3  |-  ( log `  2 )  =  ( 1  x.  ( log `  2 ) )
341338, 166, 3403brtr4i 4683 . 2  |-  ( F `
; 6 4 )  < 
( log `  2
)
342182, 341pm3.2i 471 1  |-  ( ( F ` ; 6 4 )  e.  RR  /\  ( F `
; 6 4 )  < 
( log `  2
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   8c8 11076   9c9 11077   NN0cn0 11292   ZZcz 11377  ;cdc 11493   RR+crp 11832   ^cexp 12860   sqrcsqrt 13973   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  bposlem9  25017
  Copyright terms: Public domain W3C validator