MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplim Structured version   Visualization version   Unicode version

Theorem cxplim 24698
Description: A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.)
Assertion
Ref Expression
cxplim  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( 1  /  ( n  ^c  A ) ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem cxplim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 11839 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
21adantl 482 . . . . 5  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  x  e.  RR )
3 rpge0 11845 . . . . . 6  |-  ( x  e.  RR+  ->  0  <_  x )
43adantl 482 . . . . 5  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  0  <_  x )
5 rpre 11839 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
65renegcld 10457 . . . . . . 7  |-  ( A  e.  RR+  ->  -u A  e.  RR )
76adantr 481 . . . . . 6  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  -u A  e.  RR )
8 rpcn 11841 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  CC )
9 rpne0 11848 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  =/=  0 )
108, 9negne0d 10390 . . . . . . 7  |-  ( A  e.  RR+  ->  -u A  =/=  0 )
1110adantr 481 . . . . . 6  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  -u A  =/=  0 )
127, 11rereccld 10852 . . . . 5  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  (
1  /  -u A
)  e.  RR )
132, 4, 12recxpcld 24469 . . . 4  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  (
x  ^c  ( 1  /  -u A
) )  e.  RR )
14 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  n  e.  RR+ )
155ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  A  e.  RR )
1614, 15rpcxpcld 24476 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
n  ^c  A )  e.  RR+ )
1716rpreccld 11882 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  ( n  ^c  A ) )  e.  RR+ )
1817rprege0d 11879 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( 1  /  (
n  ^c  A ) )  e.  RR  /\  0  <_  ( 1  /  ( n  ^c  A ) ) ) )
19 absid 14036 . . . . . . . 8  |-  ( ( ( 1  /  (
n  ^c  A ) )  e.  RR  /\  0  <_  ( 1  /  ( n  ^c  A ) ) )  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  =  ( 1  /  ( n  ^c  A ) ) )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  ( abs `  ( 1  / 
( n  ^c  A ) ) )  =  ( 1  / 
( n  ^c  A ) ) )
21 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  x  e.  RR+ )
22 simprr 796 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
x  ^c  ( 1  /  -u A
) )  <  n
)
23 rpreccl 11857 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
2423ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  A )  e.  RR+ )
2524rpcnd 11874 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  A )  e.  CC )
2621, 25cxprecd 24475 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( 1  /  x
)  ^c  ( 1  /  A ) )  =  ( 1  /  ( x  ^c  ( 1  /  A ) ) ) )
27 rpcn 11841 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  CC )
2827ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  x  e.  CC )
29 rpne0 11848 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  =/=  0 )
3029ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  x  =/=  0 )
3128, 30, 25cxpnegd 24461 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
x  ^c  -u ( 1  /  A
) )  =  ( 1  /  ( x  ^c  ( 1  /  A ) ) ) )
32 1cnd 10056 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  1  e.  CC )
338ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  A  e.  CC )
349ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  A  =/=  0 )
3532, 33, 34divneg2d 10815 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  -u (
1  /  A )  =  ( 1  /  -u A ) )
3635oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
x  ^c  -u ( 1  /  A
) )  =  ( x  ^c  ( 1  /  -u A
) ) )
3726, 31, 363eqtr2d 2662 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( 1  /  x
)  ^c  ( 1  /  A ) )  =  ( x  ^c  ( 1  /  -u A ) ) )
3833, 34recidd 10796 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  ( A  x.  ( 1  /  A ) )  =  1 )
3938oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
n  ^c  ( A  x.  ( 1  /  A ) ) )  =  ( n  ^c  1 ) )
4014, 15, 25cxpmuld 24480 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
n  ^c  ( A  x.  ( 1  /  A ) ) )  =  ( ( n  ^c  A )  ^c  ( 1  /  A ) ) )
4114rpcnd 11874 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  n  e.  CC )
4241cxp1d 24452 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
n  ^c  1 )  =  n )
4339, 40, 423eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( n  ^c  A )  ^c 
( 1  /  A
) )  =  n )
4422, 37, 433brtr4d 4685 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( 1  /  x
)  ^c  ( 1  /  A ) )  <  ( ( n  ^c  A )  ^c  ( 1  /  A ) ) )
45 rpreccl 11857 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
4645ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  x )  e.  RR+ )
4746rpred 11872 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  x )  e.  RR )
4846rpge0d 11876 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  0  <_  ( 1  /  x
) )
4916rpred 11872 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
n  ^c  A )  e.  RR )
5016rpge0d 11876 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  0  <_  ( n  ^c  A ) )
5147, 48, 49, 50, 24cxplt2d 24472 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
( 1  /  x
)  <  ( n  ^c  A )  <->  ( ( 1  /  x
)  ^c  ( 1  /  A ) )  <  ( ( n  ^c  A )  ^c  ( 1  /  A ) ) ) )
5244, 51mpbird 247 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  x )  <  ( n  ^c  A ) )
5321, 16, 52ltrec1d 11892 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  (
1  /  ( n  ^c  A ) )  <  x )
5420, 53eqbrtrd 4675 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( x  ^c 
( 1  /  -u A
) )  <  n
) )  ->  ( abs `  ( 1  / 
( n  ^c  A ) ) )  <  x )
5554expr 643 . . . . 5  |-  ( ( ( A  e.  RR+  /\  x  e.  RR+ )  /\  n  e.  RR+ )  ->  ( ( x  ^c  ( 1  /  -u A ) )  < 
n  ->  ( abs `  ( 1  /  (
n  ^c  A ) ) )  < 
x ) )
5655ralrimiva 2966 . . . 4  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  A. n  e.  RR+  ( ( x  ^c  ( 1  /  -u A ) )  <  n  ->  ( abs `  ( 1  / 
( n  ^c  A ) ) )  <  x ) )
57 breq1 4656 . . . . . . 7  |-  ( y  =  ( x  ^c  ( 1  /  -u A ) )  -> 
( y  <  n  <->  ( x  ^c  ( 1  /  -u A
) )  <  n
) )
5857imbi1d 331 . . . . . 6  |-  ( y  =  ( x  ^c  ( 1  /  -u A ) )  -> 
( ( y  < 
n  ->  ( abs `  ( 1  /  (
n  ^c  A ) ) )  < 
x )  <->  ( (
x  ^c  ( 1  /  -u A
) )  <  n  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  <  x
) ) )
5958ralbidv 2986 . . . . 5  |-  ( y  =  ( x  ^c  ( 1  /  -u A ) )  -> 
( A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  <  x
)  <->  A. n  e.  RR+  ( ( x  ^c  ( 1  /  -u A ) )  < 
n  ->  ( abs `  ( 1  /  (
n  ^c  A ) ) )  < 
x ) ) )
6059rspcev 3309 . . . 4  |-  ( ( ( x  ^c 
( 1  /  -u A
) )  e.  RR  /\ 
A. n  e.  RR+  ( ( x  ^c  ( 1  /  -u A ) )  < 
n  ->  ( abs `  ( 1  /  (
n  ^c  A ) ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( 1  /  ( n  ^c  A ) ) )  <  x ) )
6113, 56, 60syl2anc 693 . . 3  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  <  x
) )
6261ralrimiva 2966 . 2  |-  ( A  e.  RR+  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  <  x
) )
63 id 22 . . . . . . 7  |-  ( n  e.  RR+  ->  n  e.  RR+ )
64 rpcxpcl 24422 . . . . . . 7  |-  ( ( n  e.  RR+  /\  A  e.  RR )  ->  (
n  ^c  A )  e.  RR+ )
6563, 5, 64syl2anr 495 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
n  ^c  A )  e.  RR+ )
6665rpreccld 11882 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
1  /  ( n  ^c  A ) )  e.  RR+ )
6766rpcnd 11874 . . . 4  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
1  /  ( n  ^c  A ) )  e.  CC )
6867ralrimiva 2966 . . 3  |-  ( A  e.  RR+  ->  A. n  e.  RR+  ( 1  / 
( n  ^c  A ) )  e.  CC )
69 rpssre 11843 . . . 4  |-  RR+  C_  RR
7069a1i 11 . . 3  |-  ( A  e.  RR+  ->  RR+  C_  RR )
7168, 70rlim0lt 14240 . 2  |-  ( A  e.  RR+  ->  ( ( n  e.  RR+  |->  ( 1  /  ( n  ^c  A ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
1  /  ( n  ^c  A ) ) )  <  x
) ) )
7262, 71mpbird 247 1  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( 1  /  ( n  ^c  A ) ) )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684   RR+crp 11832   abscabs 13974    ~~> r crli 14216    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  sqrtlim  24699  signsplypnf  30627
  Copyright terms: Public domain W3C validator