![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjbdln | Structured version Visualization version GIF version |
Description: The adjoint of a bounded linear operator is a bounded linear operator. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjbdln | ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdopadj 28941 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
2 | adjval 28749 | . . . 4 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
4 | cnlnadj 28938 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | |
5 | lncnopbd 28896 | . . . . . 6 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | |
6 | lncnbd 28897 | . . . . . . 7 ⊢ (LinOp ∩ ContOp) = BndLinOp | |
7 | 6 | rexeqi 3143 | . . . . . 6 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
8 | 4, 5, 7 | 3imtr3i 280 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
9 | bdopf 28721 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
10 | bdopf 28721 | . . . . . . . 8 ⊢ (𝑡 ∈ BndLinOp → 𝑡: ℋ⟶ ℋ) | |
11 | adjsym 28692 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
12 | 9, 10, 11 | syl2an 494 | . . . . . . 7 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
13 | eqcom 2629 | . . . . . . . 8 ⊢ (((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) | |
14 | 13 | 2ralbii 2981 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
15 | 12, 14 | syl6bbr 278 | . . . . . 6 ⊢ ((𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
16 | 15 | rexbidva 3049 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
17 | 8, 16 | mpbird 247 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
18 | adjeu 28748 | . . . . . 6 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
19 | 9, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (𝑇 ∈ dom adjℎ ↔ ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
20 | 1, 19 | mpbid 222 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
21 | ax-hilex 27856 | . . . . . . . 8 ⊢ ℋ ∈ V | |
22 | 21, 21 | elmap 7886 | . . . . . . 7 ⊢ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
23 | 10, 22 | sylibr 224 | . . . . . 6 ⊢ (𝑡 ∈ BndLinOp → 𝑡 ∈ ( ℋ ↑𝑚 ℋ)) |
24 | 23 | ssriv 3607 | . . . . 5 ⊢ BndLinOp ⊆ ( ℋ ↑𝑚 ℋ) |
25 | id 22 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
26 | 25 | rgenw 2924 | . . . . 5 ⊢ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
27 | riotass2 6638 | . . . . 5 ⊢ (((BndLinOp ⊆ ( ℋ ↑𝑚 ℋ) ∧ ∀𝑡 ∈ BndLinOp (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) ∧ (∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
28 | 24, 26, 27 | mpanl12 718 | . . . 4 ⊢ ((∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
29 | 17, 20, 28 | syl2anc 693 | . . 3 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) = (℩𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
30 | 3, 29 | eqtr4d 2659 | . 2 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) = (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
31 | 24 | a1i 11 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → BndLinOp ⊆ ( ℋ ↑𝑚 ℋ)) |
32 | reuss 3908 | . . . 4 ⊢ ((BndLinOp ⊆ ( ℋ ↑𝑚 ℋ) ∧ ∃𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ∧ ∃!𝑡 ∈ ( ℋ ↑𝑚 ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
33 | 31, 17, 20, 32 | syl3anc 1326 | . . 3 ⊢ (𝑇 ∈ BndLinOp → ∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
34 | riotacl 6625 | . . 3 ⊢ (∃!𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝑇 ∈ BndLinOp → (℩𝑡 ∈ BndLinOp ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) ∈ BndLinOp) |
36 | 30, 35 | eqeltrd 2701 | 1 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∃!wreu 2914 ∩ cin 3573 ⊆ wss 3574 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 ↑𝑚 cmap 7857 ℋchil 27776 ·ih csp 27779 ContOpccop 27803 LinOpclo 27804 BndLinOpcbo 27805 adjℎcado 27812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 ax-hcompl 28059 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-cn 21031 df-cnp 21032 df-lm 21033 df-t1 21118 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cfil 23053 df-cau 23054 df-cmet 23055 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ims 27456 df-dip 27556 df-ssp 27577 df-ph 27668 df-cbn 27719 df-hnorm 27825 df-hba 27826 df-hvsub 27828 df-hlim 27829 df-hcau 27830 df-sh 28064 df-ch 28078 df-oc 28109 df-ch0 28110 df-shs 28167 df-pjh 28254 df-h0op 28607 df-nmop 28698 df-cnop 28699 df-lnop 28700 df-bdop 28701 df-unop 28702 df-hmop 28703 df-nmfn 28704 df-nlfn 28705 df-cnfn 28706 df-lnfn 28707 df-adjh 28708 |
This theorem is referenced by: adjbdlnb 28943 adjbd1o 28944 nmopadjlem 28948 nmopadji 28949 adjcoi 28959 nmopcoadj2i 28961 nmopcoadj0i 28962 |
Copyright terms: Public domain | W3C validator |