MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Visualization version   Unicode version

Theorem c1liplem1 23759
Description: Lemma for c1lip1 23760. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a  |-  ( ph  ->  A  e.  RR )
c1liplem1.b  |-  ( ph  ->  B  e.  RR )
c1liplem1.le  |-  ( ph  ->  A  <_  B )
c1liplem1.f  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
c1liplem1.dv  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.cn  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.k  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
Assertion
Ref Expression
c1liplem1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, F, y
Allowed substitution hints:    K( x, y)

Proof of Theorem c1liplem1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
2 imassrn 5477 . . . . . 6  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  ran  abs
3 absf 14077 . . . . . . 7  |-  abs : CC
--> RR
4 frn 6053 . . . . . . 7  |-  ( abs
: CC --> RR  ->  ran 
abs  C_  RR )
53, 4ax-mp 5 . . . . . 6  |-  ran  abs  C_  RR
62, 5sstri 3612 . . . . 5  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  RR
76a1i 11 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR )
8 dvf 23671 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
9 ffun 6048 . . . . . . . 8  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
108, 9ax-mp 5 . . . . . . 7  |-  Fun  ( RR  _D  F )
1110a1i 11 . . . . . 6  |-  ( ph  ->  Fun  ( RR  _D  F ) )
12 c1liplem1.dv . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
13 cncff 22696 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( RR 
_D  F )  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 fdm 6051 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) : ( A [,] B
) --> RR  ->  dom  ( ( RR  _D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
1512, 13, 143syl 18 . . . . . . 7  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
16 ssdmres 5420 . . . . . . 7  |-  ( ( A [,] B ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( A [,] B
) )  =  ( A [,] B ) )
1715, 16sylibr 224 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  dom  ( RR 
_D  F ) )
18 c1liplem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
1918rexrd 10089 . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
20 c1liplem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
2120rexrd 10089 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
22 c1liplem1.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
23 lbicc2 12288 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2419, 21, 22, 23syl3anc 1326 . . . . . 6  |-  ( ph  ->  A  e.  ( A [,] B ) )
25 funfvima2 6493 . . . . . . 7  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  ( A  e.  ( A [,] B )  ->  (
( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ) )
2625imp 445 . . . . . 6  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  A  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
2711, 17, 24, 26syl21anc 1325 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
28 ffun 6048 . . . . . . 7  |-  ( abs
: CC --> RR  ->  Fun 
abs )
293, 28ax-mp 5 . . . . . 6  |-  Fun  abs
30 imassrn 5477 . . . . . . . 8  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  ran  ( RR  _D  F
)
31 frn 6053 . . . . . . . . 9  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  ran  ( RR  _D  F )  C_  CC )
328, 31ax-mp 5 . . . . . . . 8  |-  ran  ( RR  _D  F )  C_  CC
3330, 32sstri 3612 . . . . . . 7  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  CC
343fdmi 6052 . . . . . . 7  |-  dom  abs  =  CC
3533, 34sseqtr4i 3638 . . . . . 6  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  dom  abs
36 funfvima2 6493 . . . . . 6  |-  ( ( Fun  abs  /\  (
( RR  _D  F
) " ( A [,] B ) ) 
C_  dom  abs )  ->  ( ( ( RR 
_D  F ) `  A )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
3729, 35, 36mp2an 708 . . . . 5  |-  ( ( ( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
38 ne0i 3921 . . . . 5  |-  ( ( abs `  ( ( RR  _D  F ) `
 A ) )  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
3927, 37, 383syl 18 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  =/=  (/) )
40 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
41 ssid 3624 . . . . . . . 8  |-  CC  C_  CC
42 cncfss 22702 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4340, 41, 42mp2an 708 . . . . . . 7  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4443, 12sseldi 3601 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
45 cniccbdd 23230 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )
4618, 20, 44, 45syl3anc 1326 . . . . 5  |-  ( ph  ->  E. a  e.  RR  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  x ) )  <_ 
a )
47 fvelima 6248 . . . . . . . . . 10  |-  ( ( Fun  abs  /\  b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
4829, 47mpan 706 . . . . . . . . 9  |-  ( b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
49 fvelima 6248 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( RR  _D  F )  /\  y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
5010, 49mpan 706 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( RR 
_D  F ) "
( A [,] B
) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
51 fvres 6207 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  ( A [,] B )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5251adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5352fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  =  ( abs `  ( ( RR  _D  F ) `
 b ) ) )
54 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  b  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x )  =  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )
5554fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  x
) )  =  ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  b ) ) )
5655breq1d 4663 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  (
( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  <->  ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )  <_  a )
)
5756rspccva 3308 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  <_  a
)
5853, 57eqbrtrrd 4677 . . . . . . . . . . . . . . . 16  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( RR 
_D  F ) `  b ) )  <_ 
a )
5958adantll 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( abs `  (
( RR  _D  F
) `  b )
)  <_  a )
60 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( abs `  ( ( RR  _D  F ) `  b
) )  =  ( abs `  y ) )
6160breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( ( abs `  ( ( RR  _D  F ) `
 b ) )  <_  a  <->  ( abs `  y )  <_  a
) )
6259, 61syl5ibcom 235 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6362rexlimdva 3031 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6450, 63syl5 34 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( y  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  y
)  <_  a )
)
6564imp 445 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( abs `  y
)  <_  a )
66 breq1 4656 . . . . . . . . . . 11  |-  ( ( abs `  y )  =  b  ->  (
( abs `  y
)  <_  a  <->  b  <_  a ) )
6765, 66syl5ibcom 235 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( ( abs `  y
)  =  b  -> 
b  <_  a )
)
6867rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b  -> 
b  <_  a )
)
6948, 68syl5 34 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) )  ->  b  <_  a
) )
7069ralrimiv 2965 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  A. b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) b  <_  a )
7170ex 450 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a  ->  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a ) )
7271reximdva 3017 . . . . 5  |-  ( ph  ->  ( E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
) )
7346, 72mpd 15 . . . 4  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a )
74 suprcl 10983 . . . 4  |-  ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  ->  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  e.  RR )
757, 39, 73, 74syl3anc 1326 . . 3  |-  ( ph  ->  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )  e.  RR )
761, 75syl5eqel 2705 . 2  |-  ( ph  ->  K  e.  RR )
77 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( A [,] B ) )
78 fvres 6207 . . . . . . . . . . 11  |-  ( y  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  =  ( F `  y
) )
7977, 78syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  =  ( F `  y ) )
80 c1liplem1.cn . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
81 cncff 22696 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8280, 81syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8382ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) ) : ( A [,] B ) --> RR )
8483, 77ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  RR )
8584recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  CC )
8679, 85eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  y )  e.  CC )
87 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( A [,] B ) )
88 fvres 6207 . . . . . . . . . . 11  |-  ( x  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  =  ( F `  x
) )
8987, 88syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  =  ( F `  x ) )
9083, 87ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  RR )
9190recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  CC )
9289, 91eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  x )  e.  CC )
9386, 92subcld 10392 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F `  y )  -  ( F `  x ) )  e.  CC )
94 iccssre 12255 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
9518, 20, 94syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
9695ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  RR )
9796, 77sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR )
9896, 87sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR )
9997, 98resubcld 10458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR )
10099recnd 10068 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  CC )
101 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <  y )
102 difrp 11868 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
10398, 97, 102syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
104101, 103mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR+ )
105104rpne0d 11877 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  =/=  0
)
10693, 100, 105absdivd 14194 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  =  ( ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  /  ( abs `  (
y  -  x ) ) ) )
1076a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  C_  RR )
10839ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
10973ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)
11029a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  Fun  abs )
11193, 100, 105divcld 10801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  CC )
112111, 34syl6eleqr 2712 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e. 
dom  abs )
11398rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR* )
11497rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR* )
11598, 97, 101ltled 10185 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <_  y )
116 ubicc2 12289 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  y  e.  ( x [,] y
) )
117113, 114, 115, 116syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( x [,] y
) )
118 fvres 6207 . . . . . . . . . . . . . 14  |-  ( y  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  y )  =  ( F `  y ) )
119117, 118syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  y )  =  ( F `  y ) )
120 lbicc2 12288 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  x  e.  ( x [,] y
) )
121113, 114, 115, 120syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( x [,] y
) )
122 fvres 6207 . . . . . . . . . . . . . 14  |-  ( x  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  x )  =  ( F `  x ) )
123121, 122syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  x )  =  ( F `  x ) )
124119, 123oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  =  ( ( F `  y
)  -  ( F `
 x ) ) )
125124oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  =  ( ( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )
126 iccss2 12244 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
( x [,] y
)  C_  ( A [,] B ) )
127126ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  ( A [,] B ) )
128127resabs1d 5428 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  =  ( F  |`  ( x [,] y ) ) )
12980ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR ) )
130 rescncf 22700 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) ) )
131127, 129, 130sylc 65 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
132128, 131eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
13340a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  RR  C_  CC )
134 c1liplem1.f . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
135134ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F  e.  ( CC  ^pm  RR ) )
136 cnex 10017 . . . . . . . . . . . . . . . . . . . 20  |-  CC  e.  _V
137 reex 10027 . . . . . . . . . . . . . . . . . . . 20  |-  RR  e.  _V
138136, 137elpm2 7889 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
139138simplbi 476 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  F : dom  F --> CC )
140135, 139syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F : dom  F --> CC )
141138simprbi 480 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
142135, 141syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  F  C_  RR )
143 iccssre 12255 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x [,] y
)  C_  RR )
14498, 97, 143syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  RR )
145 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
146145tgioo2 22606 . . . . . . . . . . . . . . . . . 18  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
147145, 146dvres 23675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( RR  C_  CC  /\  F : dom  F --> CC )  /\  ( dom  F  C_  RR  /\  (
x [,] y ) 
C_  RR ) )  ->  ( RR  _D  ( F  |`  ( x [,] y ) ) )  =  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) ) )
148133, 140, 142, 144, 147syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( x [,] y ) ) ) )
149 iccntr 22624 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) )  =  ( x (,) y
) )
15098, 97, 149syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  (
x [,] y ) )  =  ( x (,) y ) )
151150reseq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) )  =  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
152148, 151eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( x (,) y ) ) )
153152dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  dom  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
154 ioossicc 12259 . . . . . . . . . . . . . . . . 17  |-  ( x (,) y )  C_  ( x [,] y
)
155154, 127syl5ss 3614 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  ( A [,] B ) )
15617ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  dom  ( RR  _D  F
) )
157155, 156sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  dom  ( RR  _D  F
) )
158 ssdmres 5420 . . . . . . . . . . . . . . 15  |-  ( ( x (,) y ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
159157, 158sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
160153, 159eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  ( x (,) y
) )
16198, 97, 101, 132, 160mvth 23755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  ( x (,) y
) ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) ) )
162152fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  (
x (,) y ) ) `  a ) )
163162adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  ( x (,) y
) ) `  a
) )
164 fvres 6207 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( x (,) y )  ->  (
( ( RR  _D  F )  |`  (
x (,) y ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
165164ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  F )  |`  ( x (,) y
) ) `  a
)  =  ( ( RR  _D  F ) `
 a ) )
166163, 165eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
16710a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  ->  Fun  ( RR  _D  F
) )
16817ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( A [,] B
)  C_  dom  ( RR 
_D  F ) )
169155sseld 3602 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  a  e.  ( A [,] B ) ) )
170169impr 649 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
a  e.  ( A [,] B ) )
171 funfvima2 6493 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  (
a  e.  ( A [,] B )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) )
172171imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  a  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
173167, 168, 170, 172syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
174166, 173eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )
175 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  <-> 
( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
176174, 175syl5ibcom 235 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
177176expr 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  ( (
( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( ( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  /  (
y  -  x ) )  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) ) )
178177rexlimdv 3030 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( E. a  e.  ( x (,) y ) ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
179161, 178mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) )
180125, 179eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )
181 funfvima 6492 . . . . . . . . . . 11  |-  ( ( Fun  abs  /\  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) )  e.  dom  abs )  ->  ( ( ( ( F `  y )  -  ( F `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
182181imp 445 . . . . . . . . . 10  |-  ( ( ( Fun  abs  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  dom  abs )  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )  -> 
( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
183110, 112, 180, 182syl21anc 1325 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
184 suprub 10984 . . . . . . . . 9  |-  ( ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  /\  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
185107, 108, 109, 183, 184syl31anc 1329 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
186185, 1syl6breqr 4695 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  K )
187106, 186eqbrtrrd 4677 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( ( F `
 y )  -  ( F `  x ) ) )  /  ( abs `  ( y  -  x ) ) )  <_  K )
18893abscld 14175 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  e.  RR )
18976ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  RR )
190100, 105absrpcld 14187 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  RR+ )
191188, 189, 190ledivmuld 11925 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  /  ( abs `  ( y  -  x
) ) )  <_  K 
<->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( ( abs `  ( y  -  x ) )  x.  K ) ) )
192187, 191mpbid 222 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
( abs `  (
y  -  x ) )  x.  K ) )
193190rpcnd 11874 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  CC )
194189recnd 10068 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  CC )
195193, 194mulcomd 10061 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( y  -  x ) )  x.  K )  =  ( K  x.  ( abs `  ( y  -  x
) ) ) )
196192, 195breqtrd 4679 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  ( K  x.  ( abs `  ( y  -  x
) ) ) )
197196ex 450 . . 3  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  ->  (
x  <  y  ->  ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  <_  ( K  x.  ( abs `  ( y  -  x ) ) ) ) )
198197ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) )
19976, 198jca 554 1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   supcsup 8346   CCcc 9934   RRcr 9935    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   abscabs 13974   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  c1lip1  23760
  Copyright terms: Public domain W3C validator