HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cm2j Structured version   Visualization version   GIF version

Theorem cm2j 28479
Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cm2j (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))

Proof of Theorem cm2j
StepHypRef Expression
1 cmcm 28473 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
2 cmbr 28443 . . . . . . . . . . . 12 ((𝐵C𝐴C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
32ancoms 469 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
41, 3bitrd 268 . . . . . . . . . 10 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
54biimpa 501 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))))
6 incom 3805 . . . . . . . . . 10 (𝐵𝐴) = (𝐴𝐵)
7 incom 3805 . . . . . . . . . 10 (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐵)
86, 7oveq12i 6662 . . . . . . . . 9 ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))) = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵))
95, 8syl6eq 2672 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1093adantl3 1219 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1110adantrr 753 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
12 cmcm 28473 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 𝐶 𝐴))
13 cmbr 28443 . . . . . . . . . . . 12 ((𝐶C𝐴C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1413ancoms 469 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1512, 14bitrd 268 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1615biimpa 501 . . . . . . . . 9 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))))
17 incom 3805 . . . . . . . . . 10 (𝐶𝐴) = (𝐴𝐶)
18 incom 3805 . . . . . . . . . 10 (𝐶 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐶)
1917, 18oveq12i 6662 . . . . . . . . 9 ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))) = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))
2016, 19syl6eq 2672 . . . . . . . 8 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
21203adantl2 1218 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2221adantrl 752 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2311, 22oveq12d 6668 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))))
24 chincl 28358 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
25 choccl 28165 . . . . . . . . . 10 (𝐴C → (⊥‘𝐴) ∈ C )
26 chincl 28358 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2725, 26sylan 488 . . . . . . . . 9 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2824, 27jca 554 . . . . . . . 8 ((𝐴C𝐵C ) → ((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ))
29 chincl 28358 . . . . . . . . 9 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
30 chincl 28358 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3125, 30sylan 488 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3229, 31jca 554 . . . . . . . 8 ((𝐴C𝐶C ) → ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C ))
33 chj4 28394 . . . . . . . 8 ((((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ) ∧ ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3428, 32, 33syl2an 494 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
35343impdi 1381 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3635adantr 481 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
37 incom 3805 . . . . . . 7 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
38 fh1 28477 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
3937, 38syl5reqr 2671 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
40 incom 3805 . . . . . . 7 ((⊥‘𝐴) ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴))
41253anim1i 1248 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
4241adantr 481 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
43 cmcm3 28474 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
44433adant3 1081 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
45 cmcm3 28474 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
46453adant2 1080 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
4744, 46anbi12d 747 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) ↔ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)))
4847biimpa 501 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶))
49 fh1 28477 . . . . . . . 8 ((((⊥‘𝐴) ∈ C𝐵C𝐶C ) ∧ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
5042, 48, 49syl2anc 693 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
5140, 50syl5reqr 2671 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴)))
5239, 51oveq12d 6668 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5323, 36, 523eqtrd 2660 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5453ex 450 . . 3 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
55 chjcl 28216 . . . . 5 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
56 cmcm 28473 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) 𝐶 𝐴))
57 cmbr 28443 . . . . . . 7 (((𝐵 𝐶) ∈ C𝐴C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5857ancoms 469 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5956, 58bitrd 268 . . . . 5 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6055, 59sylan2 491 . . . 4 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
61603impb 1260 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6254, 61sylibrd 249 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → 𝐴 𝐶 (𝐵 𝐶)))
6362imp 445 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573   class class class wbr 4653  cfv 5888  (class class class)co 6650   C cch 27786  cort 27787   chj 27790   𝐶 ccm 27793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-chj 28169  df-cm 28442
This theorem is referenced by:  cm2ji  28484
  Copyright terms: Public domain W3C validator