HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh2 Structured version   Visualization version   GIF version

Theorem fh2 28478
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh2
StepHypRef Expression
1 chincl 28358 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 28358 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 28216 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 494 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 873 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 28216 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 28358 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 491 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 28081 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 554 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1260 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 28399 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 chdmj1 28388 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
171, 2, 16syl2an 494 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
18 chdmm1 28384 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
1918adantr 481 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
2019ineq1d 3813 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2117, 20eqtrd 2656 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
22213impdi 1381 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶))))
2322ineq2d 3814 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
2423adantr 481 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))))
25 in4 3829 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶))))
26 cmcm2 28475 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
27 cmcm 28473 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
28 choccl 28165 . . . . . . . . . . . . . 14 (𝐵C → (⊥‘𝐵) ∈ C )
29 cmbr3 28467 . . . . . . . . . . . . . 14 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3028, 29sylan2 491 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3126, 27, 303bitr3d 298 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3231biimpa 501 . . . . . . . . . . 11 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
33 incom 3805 . . . . . . . . . . 11 (𝐴 ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ 𝐴)
3432, 33syl6eq 2672 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
35343adantl3 1219 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐴) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3635adantrr 753 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = ((⊥‘𝐵) ∩ 𝐴))
3736ineq1d 3813 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3825, 37syl5eq 2668 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
3924, 38eqtrd 2656 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))))
40 in4 3829 . . . . 5 (((⊥‘𝐵) ∩ 𝐴) ∩ ((𝐵 𝐶) ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))
4139, 40syl6eq 2672 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
42 ococ 28265 . . . . . . . . . . 11 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
4342oveq1d 6665 . . . . . . . . . 10 (𝐵C → ((⊥‘(⊥‘𝐵)) ∨ 𝐶) = (𝐵 𝐶))
4443ineq2d 3814 . . . . . . . . 9 (𝐵C → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
45443ad2ant2 1083 . . . . . . . 8 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
4645adantr 481 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ (𝐵 𝐶)))
47 cmcm3 28474 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ (⊥‘𝐵) 𝐶 𝐶))
48 cmbr3 28467 . . . . . . . . . . . 12 (((⊥‘𝐵) ∈ C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
4928, 48sylan 488 . . . . . . . . . . 11 ((𝐵C𝐶C ) → ((⊥‘𝐵) 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5047, 49bitrd 268 . . . . . . . . . 10 ((𝐵C𝐶C ) → (𝐵 𝐶 𝐶 ↔ ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶)))
5150biimpa 501 . . . . . . . . 9 (((𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
52513adantl1 1217 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ 𝐵 𝐶 𝐶) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5352adantrl 752 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ ((⊥‘(⊥‘𝐵)) ∨ 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5446, 53eqtr3d 2658 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((⊥‘𝐵) ∩ (𝐵 𝐶)) = ((⊥‘𝐵) ∩ 𝐶))
5554ineq1d 3813 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
56 inass 3823 . . . . . . . . 9 (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))))
57 in12 3824 . . . . . . . . . . . 12 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
58 inass 3823 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = (𝐴 ∩ (𝐶 ∩ (⊥‘(𝐴𝐶))))
5957, 58eqtr4i 2647 . . . . . . . . . . 11 (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶)))
60 chocin 28354 . . . . . . . . . . . 12 ((𝐴𝐶) ∈ C → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
612, 60syl 17 . . . . . . . . . . 11 ((𝐴C𝐶C ) → ((𝐴𝐶) ∩ (⊥‘(𝐴𝐶))) = 0)
6259, 61syl5eq 2668 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
6362ineq2d 3814 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐵) ∩ (𝐶 ∩ (𝐴 ∩ (⊥‘(𝐴𝐶))))) = ((⊥‘𝐵) ∩ 0))
6456, 63syl5eq 2668 . . . . . . . 8 ((𝐴C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
65643adant2 1080 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = ((⊥‘𝐵) ∩ 0))
66 chm0 28350 . . . . . . . . 9 ((⊥‘𝐵) ∈ C → ((⊥‘𝐵) ∩ 0) = 0)
6728, 66syl 17 . . . . . . . 8 (𝐵C → ((⊥‘𝐵) ∩ 0) = 0)
68673ad2ant2 1083 . . . . . . 7 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐵) ∩ 0) = 0)
6965, 68eqtrd 2656 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7069adantr 481 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ 𝐶) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7155, 70eqtrd 2656 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (((⊥‘𝐵) ∩ (𝐵 𝐶)) ∩ (𝐴 ∩ (⊥‘(𝐴𝐶)))) = 0)
7241, 71eqtrd 2656 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
73 pjoml 28295 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7413, 15, 72, 73syl12anc 1324 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
7574eqcomd 2628 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝐶 𝐴𝐵 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650   S csh 27785   C cch 27786  cort 27787   chj 27790  0c0h 27792   𝐶 ccm 27793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-chj 28169  df-cm 28442
This theorem is referenced by:  fh2i  28481  atordi  29243  chirredlem2  29250
  Copyright terms: Public domain W3C validator