MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2if Structured version   Visualization version   GIF version

Theorem dchrvmasum2if 25186
Description: Combine the results of dchrvmasumlem1 25184 and dchrvmasum2lem 25185 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2if (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝜓,𝑑,𝑚   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2if
StepHypRef Expression
1 fzfid 12772 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 rpvmasum.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
3 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
4 rpvmasum.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
5 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
6 dchrisum.b . . . . . . . . . 10 (𝜑𝑋𝐷)
76adantr 481 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
8 elfzelz 12342 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
98adantl 482 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
102, 3, 4, 5, 7, 9dchrzrhcl 24970 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
11 elfznn 12370 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
13 mucl 24867 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1413zred 11482 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
15 nndivre 11056 . . . . . . . . . . 11 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1614, 15mpancom 703 . . . . . . . . . 10 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 10068 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1910, 18mulcld 10060 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
20 fzfid 12772 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
217adantr 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
22 elfzelz 12342 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
2322adantl 482 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
242, 3, 4, 5, 21, 23dchrzrhcl 24970 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
25 elfznn 12370 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
2625adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
2726nnrpd 11870 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
2827relogcld 24369 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
2928, 26nndivred 11069 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
3029recnd 10068 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
3124, 30mulcld 10060 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3220, 31fsumcl 14464 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3319, 32mulcld 10060 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) ∈ ℂ)
34 dchrvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
3511nnrpd 11870 . . . . . . . . . . . . . . 15 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
36 rpdivcl 11856 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
3734, 35, 36syl2an 494 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
3837adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / 𝑑) ∈ ℝ+)
3938, 27rpdivcld 11889 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
4039relogcld 24369 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
4140, 26nndivred 11069 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
4241recnd 10068 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
4324, 42mulcld 10060 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4420, 43fsumcl 14464 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4519, 44mulcld 10060 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) ∈ ℂ)
461, 33, 45fsumadd 14470 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
4738, 27relogdivd 24372 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) = ((log‘(𝐴 / 𝑑)) − (log‘𝑚)))
4847oveq2d 6666 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))))
4928recnd 10068 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
5037relogcld 24369 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℝ)
5150recnd 10068 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5251adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5349, 52pncan3d 10395 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))) = (log‘(𝐴 / 𝑑)))
5448, 53eqtr2d 2657 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) = ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))))
5554oveq1d 6665 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚))
5640recnd 10068 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
5726nncnd 11036 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
5826nnne0d 11065 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
5949, 56, 57, 58divdird 10839 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6055, 59eqtrd 2656 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6160oveq2d 6666 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6224, 30, 42adddid 10064 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6361, 62eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6463sumeq2dv 14433 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6520, 31, 43fsumadd 14470 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6664, 65eqtrd 2656 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6766oveq2d 6666 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6819, 32, 44adddid 10064 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6967, 68eqtrd 2656 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7069sumeq2dv 14433 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
71 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
72 rpvmasum.1 . . . . . . 7 1 = (0g𝐺)
73 dchrisum.n1 . . . . . . 7 (𝜑𝑋1 )
743, 5, 71, 2, 4, 72, 6, 73, 34dchrvmasumlem1 25184 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
75 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
763, 5, 71, 2, 4, 72, 6, 73, 34, 75dchrvmasum2lem 25185 . . . . . 6 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
7774, 76oveq12d 6668 . . . . 5 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7846, 70, 773eqtr4rd 2667 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
7978adantr 481 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
80 iftrue 4092 . . . . 5 (𝜓 → if(𝜓, (log‘𝐴), 0) = (log‘𝐴))
8180oveq2d 6666 . . . 4 (𝜓 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
8281adantl 482 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
83 iftrue 4092 . . . . . . . . . 10 (𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = (𝐴 / 𝑑))
8483fveq2d 6195 . . . . . . . . 9 (𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘(𝐴 / 𝑑)))
8584oveq1d 6665 . . . . . . . 8 (𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘(𝐴 / 𝑑)) / 𝑚))
8685oveq2d 6666 . . . . . . 7 (𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8786sumeq2sdv 14435 . . . . . 6 (𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8887oveq2d 6666 . . . . 5 (𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
8988sumeq2sdv 14435 . . . 4 (𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9089adantl 482 . . 3 ((𝜑𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9179, 82, 903eqtr4d 2666 . 2 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
926adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
93 elfzelz 12342 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
9493adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
952, 3, 4, 5, 92, 94dchrzrhcl 24970 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
96 elfznn 12370 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
9796adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
98 vmacl 24844 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
99 nndivre 11056 . . . . . . . . . 10 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10098, 99mpancom 703 . . . . . . . . 9 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
101100recnd 10068 . . . . . . . 8 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10297, 101syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10395, 102mulcld 10060 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1041, 103fsumcl 14464 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
105104adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝜓) → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
106105addid1d 10236 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
107 iffalse 4095 . . . . 5 𝜓 → if(𝜓, (log‘𝐴), 0) = 0)
108107adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, (log‘𝐴), 0) = 0)
109108oveq2d 6666 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0))
110 iffalse 4095 . . . . . . . . . 10 𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = 𝑚)
111110fveq2d 6195 . . . . . . . . 9 𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘𝑚))
112111oveq1d 6665 . . . . . . . 8 𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘𝑚) / 𝑚))
113112oveq2d 6666 . . . . . . 7 𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
114113sumeq2sdv 14435 . . . . . 6 𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
115114oveq2d 6666 . . . . 5 𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
116115sumeq2sdv 14435 . . . 4 𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
11774eqcomd 2628 . . . 4 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
118116, 117sylan9eqr 2678 . . 3 ((𝜑 ∧ ¬ 𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
119106, 109, 1183eqtr4d 2666 . 2 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
12091, 119pm2.61dan 832 1 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  +crp 11832  ...cfz 12326  cfl 12591  Σcsu 14416  Basecbs 15857  0gc0g 16100  ℤRHomczrh 19848  ℤ/nczn 19851  logclog 24301  Λcvma 24818  μcmu 24821  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-mu 24827  df-dchr 24958
This theorem is referenced by:  dchrvmasumiflem2  25191
  Copyright terms: Public domain W3C validator