Proof of Theorem emcllem2
| Step | Hyp | Ref
| Expression |
| 1 | | peano2nn 11032 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
| 2 | 1 | nnrecred 11066 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 + 1)) ∈
ℝ) |
| 3 | 1 | nnrpd 11870 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℝ+) |
| 4 | 3 | relogcld 24369 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(log‘(𝑁 + 1)) ∈
ℝ) |
| 5 | | nnrp 11842 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 6 | 5 | relogcld 24369 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(log‘𝑁) ∈
ℝ) |
| 7 | 4, 6 | resubcld 10458 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((log‘(𝑁 + 1))
− (log‘𝑁))
∈ ℝ) |
| 8 | | fzfid 12772 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
| 9 | | elfznn 12370 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ) |
| 10 | 9 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ) |
| 11 | 10 | nnrecred 11066 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ) |
| 12 | 8, 11 | fsumrecl 14465 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ) |
| 13 | 3 | rpreccld 11882 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 + 1)) ∈
ℝ+) |
| 14 | 13 | rpge0d 11876 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 0 ≤ (1
/ (𝑁 +
1))) |
| 15 | | 1div1e1 10717 |
. . . . . . . . . . . 12
⊢ (1 / 1) =
1 |
| 16 | | 1re 10039 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
| 17 | | ltaddrp 11867 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ 𝑁
∈ ℝ+) → 1 < (1 + 𝑁)) |
| 18 | 16, 5, 17 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 1 < (1
+ 𝑁)) |
| 19 | | ax-1cn 9994 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 20 | | nncn 11028 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 21 | | addcom 10222 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑁
∈ ℂ) → (1 + 𝑁) = (𝑁 + 1)) |
| 22 | 19, 20, 21 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (1 +
𝑁) = (𝑁 + 1)) |
| 23 | 18, 22 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 1 <
(𝑁 + 1)) |
| 24 | 15, 23 | syl5eqbr 4688 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (1 / 1)
< (𝑁 +
1)) |
| 25 | 1 | nnred 11035 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℝ) |
| 26 | 1 | nngt0d 11064 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 0 <
(𝑁 + 1)) |
| 27 | | 0lt1 10550 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 28 | | ltrec1 10910 |
. . . . . . . . . . . . 13
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) <
(𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1)) |
| 29 | 16, 27, 28 | mpanl12 718 |
. . . . . . . . . . . 12
⊢ (((𝑁 + 1) ∈ ℝ ∧ 0
< (𝑁 + 1)) → ((1 /
1) < (𝑁 + 1) ↔ (1 /
(𝑁 + 1)) <
1)) |
| 30 | 25, 26, 29 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((1 / 1)
< (𝑁 + 1) ↔ (1 /
(𝑁 + 1)) <
1)) |
| 31 | 24, 30 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 + 1)) <
1) |
| 32 | 2, 14, 31 | eflegeo 14851 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(exp‘(1 / (𝑁 + 1)))
≤ (1 / (1 − (1 / (𝑁 + 1))))) |
| 33 | 25 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℂ) |
| 34 | | nnne0 11053 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 35 | 1 | nnne0d 11065 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0) |
| 36 | 20, 33, 34, 35 | recdivd 10818 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁)) |
| 37 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
| 38 | 33, 37, 33, 35 | divsubdird 10840 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1)))) |
| 39 | | pncan 10287 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 40 | 20, 19, 39 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁) |
| 41 | 40 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1))) |
| 42 | 33, 35 | dividd 10799 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1) |
| 43 | 42 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1)))) |
| 44 | 38, 41, 43 | 3eqtr3rd 2665 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (1
− (1 / (𝑁 + 1))) =
(𝑁 / (𝑁 + 1))) |
| 45 | 44 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (1 / (1
− (1 / (𝑁 + 1)))) =
(1 / (𝑁 / (𝑁 + 1)))) |
| 46 | 3, 5 | rpdivcld 11889 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈
ℝ+) |
| 47 | 46 | reeflogd 24370 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(exp‘(log‘((𝑁 +
1) / 𝑁))) = ((𝑁 + 1) / 𝑁)) |
| 48 | 36, 45, 47 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (1 / (1
− (1 / (𝑁 + 1)))) =
(exp‘(log‘((𝑁 +
1) / 𝑁)))) |
| 49 | 32, 48 | breqtrd 4679 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(exp‘(1 / (𝑁 + 1)))
≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))) |
| 50 | 3, 5 | relogdivd 24372 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁))) |
| 51 | 50, 7 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(log‘((𝑁 + 1) / 𝑁)) ∈
ℝ) |
| 52 | | efle 14848 |
. . . . . . . . 9
⊢ (((1 /
(𝑁 + 1)) ∈ ℝ
∧ (log‘((𝑁 + 1) /
𝑁)) ∈ ℝ) →
((1 / (𝑁 + 1)) ≤
(log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤
(exp‘(log‘((𝑁 +
1) / 𝑁))))) |
| 53 | 2, 51, 52 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((1 /
(𝑁 + 1)) ≤
(log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤
(exp‘(log‘((𝑁 +
1) / 𝑁))))) |
| 54 | 49, 53 | mpbird 247 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 + 1)) ≤
(log‘((𝑁 + 1) / 𝑁))) |
| 55 | 54, 50 | breqtrd 4679 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 /
(𝑁 + 1)) ≤
((log‘(𝑁 + 1))
− (log‘𝑁))) |
| 56 | 2, 7, 12, 55 | leadd2dd 10642 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁)))) |
| 57 | | id 22 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 58 | | nnuz 11723 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 59 | 57, 58 | syl6eleq 2711 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
| 60 | | elfznn 12370 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ) |
| 61 | 60 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ) |
| 62 | 61 | nnrecred 11066 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ) |
| 63 | 62 | recnd 10068 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ) |
| 64 | | oveq2 6658 |
. . . . . 6
⊢ (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1))) |
| 65 | 59, 63, 64 | fsump1 14487 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1)))) |
| 66 | 4 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(log‘(𝑁 + 1)) ∈
ℂ) |
| 67 | 12 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ) |
| 68 | 6 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(log‘𝑁) ∈
ℂ) |
| 69 | 66, 67, 68 | addsub12d 10415 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((log‘(𝑁 + 1)) +
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁)))) |
| 70 | 56, 65, 69 | 3brtr4d 4685 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))) |
| 71 | | fzfid 12772 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 + 1)) ∈
Fin) |
| 72 | 71, 62 | fsumrecl 14465 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) |
| 73 | 12, 6 | resubcld 10458 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ) |
| 74 | 72, 4, 73 | lesubadd2d 10626 |
. . . 4
⊢ (𝑁 ∈ ℕ →
((Σ𝑚 ∈
(1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))) |
| 75 | 70, 74 | mpbird 247 |
. . 3
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈
(1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
| 76 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1))) |
| 77 | 76 | sumeq1d 14431 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚)) |
| 78 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1))) |
| 79 | 77, 78 | oveq12d 6668 |
. . . . 5
⊢ (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1)))) |
| 80 | | emcl.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
| 81 | | ovex 6678 |
. . . . 5
⊢
(Σ𝑚 ∈
(1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈
V |
| 82 | 79, 80, 81 | fvmpt 6282 |
. . . 4
⊢ ((𝑁 + 1) ∈ ℕ →
(𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1)))) |
| 83 | 1, 82 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1)))) |
| 84 | | oveq2 6658 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
| 85 | 84 | sumeq1d 14431 |
. . . . 5
⊢ (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚)) |
| 86 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁)) |
| 87 | 85, 86 | oveq12d 6668 |
. . . 4
⊢ (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
| 88 | | ovex 6678 |
. . . 4
⊢
(Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V |
| 89 | 87, 80, 88 | fvmpt 6282 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
| 90 | 75, 83, 89 | 3brtr4d 4685 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁)) |
| 91 | | peano2nn 11032 |
. . . . . . . . . 10
⊢ ((𝑁 + 1) ∈ ℕ →
((𝑁 + 1) + 1) ∈
ℕ) |
| 92 | 1, 91 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈
ℕ) |
| 93 | 92 | nnrpd 11870 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈
ℝ+) |
| 94 | 93 | relogcld 24369 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(log‘((𝑁 + 1) + 1))
∈ ℝ) |
| 95 | 94, 4 | resubcld 10458 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((log‘((𝑁 + 1) + 1))
− (log‘(𝑁 +
1))) ∈ ℝ) |
| 96 | | logdifbnd 24720 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈ ℝ+
→ ((log‘((𝑁 + 1)
+ 1)) − (log‘(𝑁
+ 1))) ≤ (1 / (𝑁 +
1))) |
| 97 | 3, 96 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((log‘((𝑁 + 1) + 1))
− (log‘(𝑁 +
1))) ≤ (1 / (𝑁 +
1))) |
| 98 | 95, 2, 12, 97 | leadd2dd 10642 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1)))) |
| 99 | 94 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(log‘((𝑁 + 1) + 1))
∈ ℂ) |
| 100 | 67, 66, 99 | subadd23d 10414 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))))) |
| 101 | 98, 100, 65 | 3brtr4d 4685 |
. . . 4
⊢ (𝑁 ∈ ℕ →
((Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚)) |
| 102 | 12, 4 | resubcld 10458 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ) |
| 103 | | leaddsub 10504 |
. . . . 5
⊢
(((Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧
(log‘((𝑁 + 1) + 1))
∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))) |
| 104 | 102, 94, 72, 103 | syl3anc 1326 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(((Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))) |
| 105 | 101, 104 | mpbid 222 |
. . 3
⊢ (𝑁 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))) |
| 106 | | oveq1 6657 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) |
| 107 | 106 | fveq2d 6195 |
. . . . 5
⊢ (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1))) |
| 108 | 85, 107 | oveq12d 6668 |
. . . 4
⊢ (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1)))) |
| 109 | | emcl.2 |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
| 110 | | ovex 6678 |
. . . 4
⊢
(Σ𝑚 ∈
(1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈
V |
| 111 | 108, 109,
110 | fvmpt 6282 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐺‘𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1)))) |
| 112 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → (𝑛 + 1) = ((𝑁 + 1) + 1)) |
| 113 | 112 | fveq2d 6195 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1))) |
| 114 | 77, 113 | oveq12d 6668 |
. . . . 5
⊢ (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))) |
| 115 | | ovex 6678 |
. . . . 5
⊢
(Σ𝑚 ∈
(1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈
V |
| 116 | 114, 109,
115 | fvmpt 6282 |
. . . 4
⊢ ((𝑁 + 1) ∈ ℕ →
(𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))) |
| 117 | 1, 116 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))) |
| 118 | 105, 111,
117 | 3brtr4d 4685 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1))) |
| 119 | 90, 118 | jca 554 |
1
⊢ (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁) ∧ (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1)))) |