MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   Unicode version

Theorem emcllem2 24723
Description: Lemma for emcl 24729. 
F is increasing, and  G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
Assertion
Ref Expression
emcllem2  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Distinct variable group:    m, n, N
Allowed substitution hints:    F( m, n)    G( m, n)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 11032 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
21nnrecred 11066 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR )
31nnrpd 11870 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
43relogcld 24369 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  RR )
5 nnrp 11842 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
65relogcld 24369 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
74, 6resubcld 10458 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  -  ( log `  N ) )  e.  RR )
8 fzfid 12772 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
9 elfznn 12370 . . . . . . . . 9  |-  ( m  e.  ( 1 ... N )  ->  m  e.  NN )
109adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  m  e.  NN )
1110nnrecred 11066 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  ( 1  /  m )  e.  RR )
128, 11fsumrecl 14465 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  RR )
133rpreccld 11882 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR+ )
1413rpge0d 11876 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <_  ( 1  /  ( N  +  1 ) ) )
15 1div1e1 10717 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
16 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
17 ltaddrp 11867 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  N  e.  RR+ )  -> 
1  <  ( 1  +  N ) )
1816, 5, 17sylancr 695 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  <  ( 1  +  N
) )
19 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
20 nncn 11028 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
21 addcom 10222 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  N
)  =  ( N  +  1 ) )
2219, 20, 21sylancr 695 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1  +  N )  =  ( N  + 
1 ) )
2318, 22breqtrd 4679 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  <  ( N  +  1 ) )
2415, 23syl5eqbr 4688 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  1 )  <  ( N  + 
1 ) )
251nnred 11035 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
261nngt0d 11064 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
27 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
28 ltrec1 10910 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( N  +  1 )  e.  RR  /\  0  < 
( N  +  1 ) ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
2916, 27, 28mpanl12 718 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  RR  /\  0  <  ( N  + 
1 ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
3025, 26, 29syl2anc 693 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  1
)  <  ( N  +  1 )  <->  ( 1  /  ( N  + 
1 ) )  <  1 ) )
3124, 30mpbid 222 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <  1 )
322, 14, 31eflegeo 14851 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( 1  /  (
1  -  ( 1  /  ( N  + 
1 ) ) ) ) )
3325recnd 10068 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
34 nnne0 11053 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  =/=  0 )
351nnne0d 11065 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
3620, 33, 34, 35recdivd 10818 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  /  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  /  N ) )
37 1cnd 10056 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  e.  CC )
3833, 37, 33, 35divsubdird 10840 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( ( ( N  +  1 )  /  ( N  + 
1 ) )  -  ( 1  /  ( N  +  1 ) ) ) )
39 pncan 10287 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4020, 19, 39sylancl 694 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
4140oveq1d 6665 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( N  / 
( N  +  1 ) ) )
4233, 35dividd 10799 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( N  +  1 ) )  =  1 )
4342oveq1d 6665 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  ( N  +  1 ) )  -  ( 1  /  ( N  + 
1 ) ) )  =  ( 1  -  ( 1  /  ( N  +  1 ) ) ) )
4438, 41, 433eqtr3rd 2665 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( N  + 
1 ) ) )  =  ( N  / 
( N  +  1 ) ) )
4544oveq2d 6666 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( 1  / 
( N  /  ( N  +  1 ) ) ) )
463, 5rpdivcld 11889 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
4746reeflogd 24370 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) )  =  ( ( N  +  1 )  /  N ) )
4836, 45, 473eqtr4d 2666 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4932, 48breqtrd 4679 . . . . . . . 8  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
503, 5relogdivd 24372 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  =  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
5150, 7eqeltrd 2701 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )
52 efle 14848 . . . . . . . . 9  |-  ( ( ( 1  /  ( N  +  1 ) )  e.  RR  /\  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )  -> 
( ( 1  / 
( N  +  1 ) )  <_  ( log `  ( ( N  +  1 )  /  N ) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
532, 51, 52syl2anc 693 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  ( N  +  1 ) )  <_  ( log `  ( ( N  + 
1 )  /  N
) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
5449, 53mpbird 247 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( log `  (
( N  +  1 )  /  N ) ) )
5554, 50breqtrd 4679 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
562, 7, 12, 55leadd2dd 10642 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N
) ) ) )
57 id 22 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN )
58 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2711 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
60 elfznn 12370 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( N  +  1 ) )  ->  m  e.  NN )
6160adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  m  e.  NN )
6261nnrecred 11066 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  RR )
6362recnd 10068 . . . . . 6  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  CC )
64 oveq2 6658 . . . . . 6  |-  ( m  =  ( N  + 
1 )  ->  (
1  /  m )  =  ( 1  / 
( N  +  1 ) ) )
6559, 63, 64fsump1 14487 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) ) )
664recnd 10068 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  CC )
6712recnd 10068 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  CC )
686recnd 10068 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
6966, 67, 68addsub12d 10415 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) ) )
7056, 65, 693brtr4d 4685 . . . 4  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) )
71 fzfid 12772 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
7271, 62fsumrecl 14465 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  e.  RR )
7312, 6resubcld 10458 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) )  e.  RR )
7472, 4, 73lesubadd2d 10626 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  N ) )  <->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) ) )
7570, 74mpbird 247 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
76 oveq2 6658 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
1 ... n )  =  ( 1 ... ( N  +  1 ) ) )
7776sumeq1d 14431 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
78 fveq2 6191 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  n )  =  ( log `  ( N  +  1 ) ) )
7977, 78oveq12d 6668 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
80 emcl.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
81 ovex 6678 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
8279, 80, 81fvmpt 6282 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
831, 82syl 17 . . 3  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
84 oveq2 6658 . . . . . 6  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
8584sumeq1d 14431 . . . . 5  |-  ( n  =  N  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... N ) ( 1  /  m ) )
86 fveq2 6191 . . . . 5  |-  ( n  =  N  ->  ( log `  n )  =  ( log `  N
) )
8785, 86oveq12d 6668 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
88 ovex 6678 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) )  e.  _V
8987, 80, 88fvmpt 6282 . . 3  |-  ( N  e.  NN  ->  ( F `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  N ) ) )
9075, 83, 893brtr4d 4685 . 2  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  <_  ( F `  N ) )
91 peano2nn 11032 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
921, 91syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
9392nnrpd 11870 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR+ )
9493relogcld 24369 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  RR )
9594, 4resubcld 10458 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
96 logdifbnd 24720 . . . . . . 7  |-  ( ( N  +  1 )  e.  RR+  ->  ( ( log `  ( ( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_  (
1  /  ( N  +  1 ) ) )
973, 96syl 17 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_ 
( 1  /  ( N  +  1 ) ) )
9895, 2, 12, 97leadd2dd 10642 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  /  ( N  +  1 ) ) ) )
9994recnd 10068 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  CC )
10067, 66, 99subadd23d 10414 . . . . 5  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) ) )
10198, 100, 653brtr4d 4685 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
10212, 4resubcld 10458 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
103 leaddsub 10504 . . . . 5  |-  ( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  e.  RR  /\  ( log `  ( ( N  + 
1 )  +  1 ) )  e.  RR  /\ 
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  e.  RR )  -> 
( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  +  ( log `  ( ( N  + 
1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  <-> 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( ( N  + 
1 )  +  1 ) ) ) ) )
104102, 94, 72, 103syl3anc 1326 . . . 4  |-  ( N  e.  NN  ->  (
( ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) ) )
105101, 104mpbid 222 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
106 oveq1 6657 . . . . . 6  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
107106fveq2d 6195 . . . . 5  |-  ( n  =  N  ->  ( log `  ( n  + 
1 ) )  =  ( log `  ( N  +  1 ) ) )
10885, 107oveq12d 6668 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
109 emcl.2 . . . 4  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
110 ovex 6678 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
111108, 109, 110fvmpt 6282 . . 3  |-  ( N  e.  NN  ->  ( G `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
112 oveq1 6657 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  +  1 )  =  ( ( N  +  1 )  +  1 ) )
113112fveq2d 6195 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  ( n  + 
1 ) )  =  ( log `  (
( N  +  1 )  +  1 ) ) )
11477, 113oveq12d 6668 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
115 ovex 6678 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) )  e.  _V
116114, 109, 115fvmpt 6282 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
1171, 116syl 17 . . 3  |-  ( N  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
118105, 111, 1173brtr4d 4685 . 2  |-  ( N  e.  NN  ->  ( G `  N )  <_  ( G `  ( N  +  1 ) ) )
11990, 118jca 554 1  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   sum_csu 14416   expce 14792   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  emcllem6  24727  emcllem7  24728
  Copyright terms: Public domain W3C validator