MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Visualization version   Unicode version

Theorem pntlemn 25289
Description: Lemma for pnt 25303. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemn  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Distinct variable groups:    z, C    z, J    z, L    z, K    z, M    z, N    z, R    z, U    z, W    z, X    z, Y    z, a, E    z, Z
Allowed substitution hints:    ph( z, a)    A( z, a)    B( z, a)    C( a)    D( z, a)    R( a)    U( a)    F( z, a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
21adantr 481 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR+ )
32rpred 11872 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR )
4 simprl 794 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  NN )
53, 4nndivred 11069 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( U  /  J
)  e.  RR )
6 pntlem1.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
7 pntlem1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
8 pntlem1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR+ )
9 pntlem1.l . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
10 pntlem1.d . . . . . . . . . . 11  |-  D  =  ( A  +  1 )
11 pntlem1.f . . . . . . . . . . 11  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
12 pntlem1.u2 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . 11  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . 11  |-  K  =  ( exp `  ( B  /  E ) )
15 pntlem1.y . . . . . . . . . . 11  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
16 pntlem1.x . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
17 pntlem1.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
18 pntlem1.w . . . . . . . . . . 11  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
19 pntlem1.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( W [,) +oo ) )
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 25286 . . . . . . . . . 10  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2120simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR+ )
2221adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR+ )
234nnrpd 11870 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR+ )
2422, 23rpdivcld 11889 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR+ )
256pntrf 25252 . . . . . . . 8  |-  R : RR+
--> RR
2625ffvelrni 6358 . . . . . . 7  |-  ( ( Z  /  J )  e.  RR+  ->  ( R `
 ( Z  /  J ) )  e.  RR )
2724, 26syl 17 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  RR )
2827, 22rerpdivcld 11903 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  RR )
2928recnd 10068 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  CC )
3029abscld 14175 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  e.  RR )
315, 30resubcld 10458 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( U  /  J )  -  ( abs `  ( ( R `
 ( Z  /  J ) )  /  Z ) ) )  e.  RR )
3223relogcld 24369 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  J
)  e.  RR )
3327recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  CC )
3422rpcnne0d 11881 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  e.  CC  /\  Z  =/=  0 ) )
3523rpcnne0d 11881 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  CC  /\  J  =/=  0 ) )
36 divdiv2 10737 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  ( J  e.  CC  /\  J  =/=  0 ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
3733, 34, 35, 36syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
384nncnd 11036 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  CC )
39 div23 10704 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  J  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4033, 38, 34, 39syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4137, 40eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4241fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) ) )
4329, 38absmuld 14193 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) )  =  ( ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) ) )
4423rprege0d 11879 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  RR  /\  0  <_  J )
)
45 absid 14036 . . . . . . . 8  |-  ( ( J  e.  RR  /\  0  <_  J )  -> 
( abs `  J
)  =  J )
4644, 45syl 17 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  J
)  =  J )
4746oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) )  =  ( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J ) )
4842, 43, 473eqtrd 2660 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
) )
4924rpred 11872 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR )
50 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  <_  ( Z  /  Y ) )
5123rpred 11872 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR )
5222rpred 11872 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR )
5315simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
5453adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR+ )
5551, 52, 54lemuldiv2d 11922 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  J  <_  ( Z  /  Y ) ) )
5650, 55mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Y  x.  J
)  <_  Z )
5754rpred 11872 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR )
5857, 52, 23lemuldivd 11921 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  Y  <_  ( Z  /  J ) ) )
5956, 58mpbid 222 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  <_  ( Z  /  J ) )
60 elicopnf 12269 . . . . . . . 8  |-  ( Y  e.  RR  ->  (
( Z  /  J
)  e.  ( Y [,) +oo )  <->  ( ( Z  /  J )  e.  RR  /\  Y  <_ 
( Z  /  J
) ) ) )
6157, 60syl 17 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Z  /  J )  e.  ( Y [,) +oo )  <->  ( ( Z  /  J
)  e.  RR  /\  Y  <_  ( Z  /  J ) ) ) )
6249, 59, 61mpbir2and 957 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  ( Y [,) +oo ) )
63 pntlem1.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463adantr 481 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  U )
65 fveq2 6191 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  ( R `  z )  =  ( R `  ( Z  /  J
) ) )
66 id 22 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  z  =  ( Z  /  J ) )
6765, 66oveq12d 6668 . . . . . . . . 9  |-  ( z  =  ( Z  /  J )  ->  (
( R `  z
)  /  z )  =  ( ( R `
 ( Z  /  J ) )  / 
( Z  /  J
) ) )
6867fveq2d 6195 . . . . . . . 8  |-  ( z  =  ( Z  /  J )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) ) )
6968breq1d 4663 . . . . . . 7  |-  ( z  =  ( Z  /  J )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) ) )  <_  U )
)
7069rspcv 3305 . . . . . 6  |-  ( ( Z  /  J )  e.  ( Y [,) +oo )  ->  ( A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U  ->  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U ) )
7162, 64, 70sylc 65 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U )
7248, 71eqbrtrrd 4677 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J )  <_  U )
7330, 3, 23lemuldivd 11921 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
)  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7472, 73mpbid 222 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  <_  ( U  /  J ) )
755, 30subge0d 10617 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 0  <_  (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7674, 75mpbird 247 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( ( U  /  J )  -  ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) ) ) )
77 log1 24332 . . 3  |-  ( log `  1 )  =  0
78 nnge1 11046 . . . . 5  |-  ( J  e.  NN  ->  1  <_  J )
7978ad2antrl 764 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
1  <_  J )
80 1rp 11836 . . . . 5  |-  1  e.  RR+
81 logleb 24349 . . . . 5  |-  ( ( 1  e.  RR+  /\  J  e.  RR+ )  ->  (
1  <_  J  <->  ( log `  1 )  <_  ( log `  J ) ) )
8280, 23, 81sylancr 695 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 1  <_  J  <->  ( log `  1 )  <_  ( log `  J
) ) )
8379, 82mpbid 222 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  1
)  <_  ( log `  J ) )
8477, 83syl5eqbrr 4689 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( log `  J ) )
8531, 32, 76, 84mulge0d 10604 1  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072  ;cdc 11493   RR+crp 11832   (,)cioo 12175   [,)cico 12177   |_cfl 12591   ^cexp 12860   sqrcsqrt 13973   abscabs 13974   expce 14792   _eceu 14793   logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-chp 24825
This theorem is referenced by:  pntlemj  25292  pntlemf  25294
  Copyright terms: Public domain W3C validator