MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aareccl Structured version   Visualization version   Unicode version

Theorem aareccl 24081
Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aareccl  |-  ( ( A  e.  AA  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  AA )

Proof of Theorem aareccl
Dummy variables  f 
g  k  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 24071 . . . 4  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( f `
 A )  =  0 ) )
21simprbi 480 . . 3  |-  ( A  e.  AA  ->  E. f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( f `
 A )  =  0 )
32adantr 481 . 2  |-  ( ( A  e.  AA  /\  A  =/=  0 )  ->  E. f  e.  (
(Poly `  ZZ )  \  { 0p }
) ( f `  A )  =  0 )
4 aacn 24072 . . . . 5  |-  ( A  e.  AA  ->  A  e.  CC )
5 reccl 10692 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  CC )
64, 5sylan 488 . . . 4  |-  ( ( A  e.  AA  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  CC )
76adantr 481 . . 3  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( 1  /  A )  e.  CC )
8 zsscn 11385 . . . . . . 7  |-  ZZ  C_  CC
98a1i 11 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ZZ  C_  CC )
10 simprl 794 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  f  e.  ( (Poly `  ZZ )  \  { 0p }
) )
11 eldifsn 4317 . . . . . . . . 9  |-  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  <->  ( f  e.  (Poly `  ZZ )  /\  f  =/=  0p ) )
1210, 11sylib 208 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( f  e.  (Poly `  ZZ )  /\  f  =/=  0p ) )
1312simpld 475 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  f  e.  (Poly `  ZZ ) )
14 dgrcl 23989 . . . . . . 7  |-  ( f  e.  (Poly `  ZZ )  ->  (deg `  f
)  e.  NN0 )
1513, 14syl 17 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  (deg `  f
)  e.  NN0 )
1613adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  f  e.  (Poly `  ZZ ) )
17 0z 11388 . . . . . . . 8  |-  0  e.  ZZ
18 eqid 2622 . . . . . . . . 9  |-  (coeff `  f )  =  (coeff `  f )
1918coef2 23987 . . . . . . . 8  |-  ( ( f  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  f ) : NN0 --> ZZ )
2016, 17, 19sylancl 694 . . . . . . 7  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  (coeff `  f
) : NN0 --> ZZ )
21 fznn0sub 12373 . . . . . . . 8  |-  ( k  e.  ( 0 ... (deg `  f )
)  ->  ( (deg `  f )  -  k
)  e.  NN0 )
2221adantl 482 . . . . . . 7  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( (deg `  f )  -  k
)  e.  NN0 )
2320, 22ffvelrnd 6360 . . . . . 6  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  e.  ZZ )
249, 15, 23elplyd 23958 . . . . 5  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  e.  (Poly `  ZZ ) )
25 0cn 10032 . . . . . 6  |-  0  e.  CC
26 eqid 2622 . . . . . . . . . 10  |-  (coeff `  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) )  =  (coeff `  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) )
2726coefv0 24004 . . . . . . . . 9  |-  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) )  e.  (Poly `  ZZ )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) `  0 )  =  ( (coeff `  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) ) `  0
) )
2824, 27syl 17 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  0
)  =  ( (coeff `  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) ) `  0
) )
2923zcnd 11483 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  e.  CC )
30 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) )
3124, 15, 29, 30coeeq2 23998 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  (coeff `  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) )  =  ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) ) )
3231fveq1d 6193 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( (coeff `  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) ) `  0
)  =  ( ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) ) `
 0 ) )
33 0nn0 11307 . . . . . . . . . 10  |-  0  e.  NN0
34 breq1 4656 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
k  <_  (deg `  f
)  <->  0  <_  (deg `  f ) ) )
35 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
(deg `  f )  -  k )  =  ( (deg `  f
)  -  0 ) )
3635fveq2d 6195 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
(coeff `  f ) `  ( (deg `  f
)  -  k ) )  =  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) )
3734, 36ifbieq1d 4109 . . . . . . . . . . 11  |-  ( k  =  0  ->  if ( k  <_  (deg `  f ) ,  ( (coeff `  f ) `  ( (deg `  f
)  -  k ) ) ,  0 )  =  if ( 0  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 ) )
38 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) )  =  ( k  e. 
NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) )
39 fvex 6201 . . . . . . . . . . . 12  |-  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) )  e.  _V
40 c0ex 10034 . . . . . . . . . . . 12  |-  0  e.  _V
4139, 40ifex 4156 . . . . . . . . . . 11  |-  if ( 0  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 )  e. 
_V
4237, 38, 41fvmpt 6282 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) ) `
 0 )  =  if ( 0  <_ 
(deg `  f ) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 ) )
4333, 42ax-mp 5 . . . . . . . . 9  |-  ( ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) ) `
 0 )  =  if ( 0  <_ 
(deg `  f ) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 )
4415nn0ge0d 11354 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  0  <_  (deg `  f ) )
4544iftrued 4094 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  if ( 0  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 )  =  ( (coeff `  f
) `  ( (deg `  f )  -  0 ) ) )
4615nn0cnd 11353 . . . . . . . . . . . 12  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  (deg `  f
)  e.  CC )
4746subid1d 10381 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( (deg `  f )  -  0 )  =  (deg `  f ) )
4847fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) )  =  ( (coeff `  f ) `  (deg `  f ) ) )
4945, 48eqtrd 2656 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  if ( 0  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  0 ) ) ,  0 )  =  ( (coeff `  f
) `  (deg `  f
) ) )
5043, 49syl5eq 2668 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( k  e.  NN0  |->  if ( k  <_  (deg `  f
) ,  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) ,  0 ) ) `
 0 )  =  ( (coeff `  f
) `  (deg `  f
) ) )
5128, 32, 503eqtrd 2660 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  0
)  =  ( (coeff `  f ) `  (deg `  f ) ) )
5212simprd 479 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  f  =/=  0p )
53 eqid 2622 . . . . . . . . . . 11  |-  (deg `  f )  =  (deg
`  f )
5453, 18dgreq0 24021 . . . . . . . . . 10  |-  ( f  e.  (Poly `  ZZ )  ->  ( f  =  0p  <->  ( (coeff `  f ) `  (deg `  f ) )  =  0 ) )
5513, 54syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( f  =  0p  <->  ( (coeff `  f ) `  (deg `  f ) )  =  0 ) )
5655necon3bid 2838 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( f  =/=  0p  <->  ( (coeff `  f ) `  (deg `  f ) )  =/=  0 ) )
5752, 56mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( (coeff `  f ) `  (deg `  f ) )  =/=  0 )
5851, 57eqnetrd 2861 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  0
)  =/=  0 )
59 ne0p 23963 . . . . . 6  |-  ( ( 0  e.  CC  /\  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  0
)  =/=  0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  =/=  0p )
6025, 58, 59sylancr 695 . . . . 5  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  =/=  0p )
61 eldifsn 4317 . . . . 5  |-  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) )  e.  ( (Poly `  ZZ )  \  {
0p } )  <-> 
( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  e.  (Poly `  ZZ )  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) )  =/=  0p ) )
6224, 60, 61sylanbrc 698 . . . 4  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  e.  ( (Poly `  ZZ )  \  { 0p }
) )
63 oveq1 6657 . . . . . . . . 9  |-  ( z  =  ( 1  /  A )  ->  (
z ^ k )  =  ( ( 1  /  A ) ^
k ) )
6463oveq2d 6666 . . . . . . . 8  |-  ( z  =  ( 1  /  A )  ->  (
( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) )  =  ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( ( 1  /  A ) ^ k ) ) )
6564sumeq2sdv 14435 . . . . . . 7  |-  ( z  =  ( 1  /  A )  ->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) )  =  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( 1  /  A
) ^ k ) ) )
66 eqid 2622 . . . . . . 7  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) )
67 sumex 14418 . . . . . . 7  |-  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( 1  /  A
) ^ k ) )  e.  _V
6865, 66, 67fvmpt 6282 . . . . . 6  |-  ( ( 1  /  A )  e.  CC  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) `  ( 1  /  A ) )  =  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( 1  /  A
) ^ k ) ) )
697, 68syl 17 . . . . 5  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  (
1  /  A ) )  =  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( 1  /  A
) ^ k ) ) )
7018coef3 23988 . . . . . . . . . . 11  |-  ( f  e.  (Poly `  ZZ )  ->  (coeff `  f
) : NN0 --> CC )
7113, 70syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  (coeff `  f
) : NN0 --> CC )
72 elfznn0 12433 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... (deg `  f )
)  ->  n  e.  NN0 )
73 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( (coeff `  f ) : NN0 --> CC  /\  n  e.  NN0 )  ->  (
(coeff `  f ) `  n )  e.  CC )
7471, 72, 73syl2an 494 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( (coeff `  f ) `  n
)  e.  CC )
754ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  A  e.  CC )
76 expcl 12878 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  CC )
7775, 72, 76syl2an 494 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
n )  e.  CC )
7874, 77mulcld 10060 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( (coeff `  f ) `  n
)  x.  ( A ^ n ) )  e.  CC )
7975, 15expcld 13008 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( A ^
(deg `  f )
)  e.  CC )
8079adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
(deg `  f )
)  e.  CC )
81 simplr 792 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  A  =/=  0
)
8215nn0zd 11480 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  (deg `  f
)  e.  ZZ )
8375, 81, 82expne0d 13014 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( A ^
(deg `  f )
)  =/=  0 )
8483adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
(deg `  f )
)  =/=  0 )
8578, 80, 84divcld 10801 . . . . . . 7  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  n  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( (coeff `  f ) `  n )  x.  ( A ^ n ) )  /  ( A ^
(deg `  f )
) )  e.  CC )
86 fveq2 6191 . . . . . . . . 9  |-  ( n  =  ( ( 0  +  (deg `  f
) )  -  k
)  ->  ( (coeff `  f ) `  n
)  =  ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) ) )
87 oveq2 6658 . . . . . . . . 9  |-  ( n  =  ( ( 0  +  (deg `  f
) )  -  k
)  ->  ( A ^ n )  =  ( A ^ (
( 0  +  (deg
`  f ) )  -  k ) ) )
8886, 87oveq12d 6668 . . . . . . . 8  |-  ( n  =  ( ( 0  +  (deg `  f
) )  -  k
)  ->  ( (
(coeff `  f ) `  n )  x.  ( A ^ n ) )  =  ( ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) )  x.  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) ) ) )
8988oveq1d 6665 . . . . . . 7  |-  ( n  =  ( ( 0  +  (deg `  f
) )  -  k
)  ->  ( (
( (coeff `  f
) `  n )  x.  ( A ^ n
) )  /  ( A ^ (deg `  f
) ) )  =  ( ( ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) )  x.  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) ) )  /  ( A ^ (deg `  f
) ) ) )
9085, 89fsumrev2 14514 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( ( (coeff `  f ) `  n
)  x.  ( A ^ n ) )  /  ( A ^
(deg `  f )
) )  =  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( ( (coeff `  f
) `  ( (
0  +  (deg `  f ) )  -  k ) )  x.  ( A ^ (
( 0  +  (deg
`  f ) )  -  k ) ) )  /  ( A ^ (deg `  f
) ) ) )
9146adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  (deg `  f
)  e.  CC )
9291addid2d 10237 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( 0  +  (deg `  f )
)  =  (deg `  f ) )
9392oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( 0  +  (deg `  f
) )  -  k
)  =  ( (deg
`  f )  -  k ) )
9493fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) )  =  ( (coeff `  f ) `  (
(deg `  f )  -  k ) ) )
9593oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) )  =  ( A ^ ( (deg `  f )  -  k
) ) )
9675adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  A  e.  CC )
9781adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  A  =/=  0
)
98 elfznn0 12433 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... (deg `  f )
)  ->  k  e.  NN0 )
9998adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  k  e.  NN0 )
10099nn0zd 11480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  k  e.  ZZ )
10182adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  (deg `  f
)  e.  ZZ )
10296, 97, 100, 101expsubd 13019 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
( (deg `  f
)  -  k ) )  =  ( ( A ^ (deg `  f ) )  / 
( A ^ k
) ) )
10395, 102eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) )  =  ( ( A ^ (deg `  f ) )  / 
( A ^ k
) ) )
10494, 103oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) )  x.  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) ) )  =  ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( A ^ (deg `  f ) )  / 
( A ^ k
) ) ) )
105104oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( (coeff `  f ) `  ( ( 0  +  (deg `  f )
)  -  k ) )  x.  ( A ^ ( ( 0  +  (deg `  f
) )  -  k
) ) )  / 
( A ^ (deg `  f ) ) )  =  ( ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( ( A ^ (deg `  f ) )  / 
( A ^ k
) ) )  / 
( A ^ (deg `  f ) ) ) )
10679adantr 481 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
(deg `  f )
)  e.  CC )
107 expcl 12878 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
10875, 98, 107syl2an 494 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
k )  e.  CC )
10996, 97, 100expne0d 13014 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
k )  =/=  0
)
110106, 108, 109divcld 10801 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( A ^ (deg `  f
) )  /  ( A ^ k ) )  e.  CC )
11183adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( A ^
(deg `  f )
)  =/=  0 )
11229, 110, 106, 111divassd 10836 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( ( A ^ (deg `  f ) )  / 
( A ^ k
) ) )  / 
( A ^ (deg `  f ) ) )  =  ( ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  x.  ( ( ( A ^ (deg `  f ) )  / 
( A ^ k
) )  /  ( A ^ (deg `  f
) ) ) ) )
113106, 111dividd 10799 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( A ^ (deg `  f
) )  /  ( A ^ (deg `  f
) ) )  =  1 )
114113oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( A ^ (deg `  f ) )  / 
( A ^ (deg `  f ) ) )  /  ( A ^
k ) )  =  ( 1  /  ( A ^ k ) ) )
115106, 108, 106, 109, 111divdiv32d 10826 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( A ^ (deg `  f ) )  / 
( A ^ k
) )  /  ( A ^ (deg `  f
) ) )  =  ( ( ( A ^ (deg `  f
) )  /  ( A ^ (deg `  f
) ) )  / 
( A ^ k
) ) )
11696, 97, 100exprecd 13016 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( 1  /  A ) ^
k )  =  ( 1  /  ( A ^ k ) ) )
117114, 115, 1163eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( A ^ (deg `  f ) )  / 
( A ^ k
) )  /  ( A ^ (deg `  f
) ) )  =  ( ( 1  /  A ) ^ k
) )
118117oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  x.  ( ( ( A ^ (deg `  f ) )  / 
( A ^ k
) )  /  ( A ^ (deg `  f
) ) ) )  =  ( ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  x.  ( ( 1  /  A ) ^
k ) ) )
119105, 112, 1183eqtrd 2660 . . . . . . 7  |-  ( ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  (
f  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( f `  A )  =  0 ) )  /\  k  e.  ( 0 ... (deg `  f ) ) )  ->  ( ( ( (coeff `  f ) `  ( ( 0  +  (deg `  f )
)  -  k ) )  x.  ( A ^ ( ( 0  +  (deg `  f
) )  -  k
) ) )  / 
( A ^ (deg `  f ) ) )  =  ( ( (coeff `  f ) `  (
(deg `  f )  -  k ) )  x.  ( ( 1  /  A ) ^
k ) ) )
120119sumeq2dv 14433 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( ( (coeff `  f ) `  (
( 0  +  (deg
`  f ) )  -  k ) )  x.  ( A ^
( ( 0  +  (deg `  f )
)  -  k ) ) )  /  ( A ^ (deg `  f
) ) )  = 
sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
( 1  /  A
) ^ k ) ) )
12190, 120eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( ( (coeff `  f ) `  n
)  x.  ( A ^ n ) )  /  ( A ^
(deg `  f )
) )  =  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( ( 1  /  A ) ^ k ) ) )
12218, 53coeid2 23995 . . . . . . . . 9  |-  ( ( f  e.  (Poly `  ZZ )  /\  A  e.  CC )  ->  (
f `  A )  =  sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  n )  x.  ( A ^ n
) ) )
12313, 75, 122syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( f `  A )  =  sum_ n  e.  ( 0 ... (deg `  f )
) ( ( (coeff `  f ) `  n
)  x.  ( A ^ n ) ) )
124 simprr 796 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( f `  A )  =  0 )
125123, 124eqtr3d 2658 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  n )  x.  ( A ^ n
) )  =  0 )
126125oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  n )  x.  ( A ^ n
) )  /  ( A ^ (deg `  f
) ) )  =  ( 0  /  ( A ^ (deg `  f
) ) ) )
127 fzfid 12772 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( 0 ... (deg `  f )
)  e.  Fin )
128127, 79, 78, 83fsumdivc 14518 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  n )  x.  ( A ^ n
) )  /  ( A ^ (deg `  f
) ) )  = 
sum_ n  e.  (
0 ... (deg `  f
) ) ( ( ( (coeff `  f
) `  n )  x.  ( A ^ n
) )  /  ( A ^ (deg `  f
) ) ) )
12979, 83div0d 10800 . . . . . 6  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( 0  / 
( A ^ (deg `  f ) ) )  =  0 )
130126, 128, 1293eqtr3d 2664 . . . . 5  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  sum_ n  e.  ( 0 ... (deg `  f ) ) ( ( ( (coeff `  f ) `  n
)  x.  ( A ^ n ) )  /  ( A ^
(deg `  f )
) )  =  0 )
13169, 121, 1303eqtr2d 2662 . . . 4  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  (
1  /  A ) )  =  0 )
132 fveq1 6190 . . . . . 6  |-  ( g  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  ->  (
g `  ( 1  /  A ) )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  (
1  /  A ) ) )
133132eqeq1d 2624 . . . . 5  |-  ( g  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) )  ->  (
( g `  (
1  /  A ) )  =  0  <->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) ) `  ( 1  /  A ) )  =  0 ) )
134133rspcev 3309 . . . 4  |-  ( ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f
) ) ( ( (coeff `  f ) `  ( (deg `  f
)  -  k ) )  x.  ( z ^ k ) ) )  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  f ) ) ( ( (coeff `  f
) `  ( (deg `  f )  -  k
) )  x.  (
z ^ k ) ) ) `  (
1  /  A ) )  =  0 )  ->  E. g  e.  ( (Poly `  ZZ )  \  { 0p }
) ( g `  ( 1  /  A
) )  =  0 )
13562, 131, 134syl2anc 693 . . 3  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  E. g  e.  ( (Poly `  ZZ )  \  { 0p }
) ( g `  ( 1  /  A
) )  =  0 )
136 elaa 24071 . . 3  |-  ( ( 1  /  A )  e.  AA  <->  ( (
1  /  A )  e.  CC  /\  E. g  e.  ( (Poly `  ZZ )  \  {
0p } ) ( g `  (
1  /  A ) )  =  0 ) )
1377, 135, 136sylanbrc 698 . 2  |-  ( ( ( A  e.  AA  /\  A  =/=  0 )  /\  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )  ->  ( 1  /  A )  e.  AA )
1383, 137rexlimddv 3035 1  |-  ( ( A  e.  AA  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  AA )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   sum_csu 14416   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943   AAcaa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator