MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp Structured version   Visualization version   Unicode version

Theorem ablfacrp 18465
Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups  K ,  L that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b  |-  B  =  ( Base `  G
)
ablfacrp.o  |-  O  =  ( od `  G
)
ablfacrp.k  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
ablfacrp.l  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
ablfacrp.g  |-  ( ph  ->  G  e.  Abel )
ablfacrp.m  |-  ( ph  ->  M  e.  NN )
ablfacrp.n  |-  ( ph  ->  N  e.  NN )
ablfacrp.1  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
ablfacrp.2  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
ablfacrp.z  |-  .0.  =  ( 0g `  G )
ablfacrp.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
ablfacrp  |-  ( ph  ->  ( ( K  i^i  L )  =  {  .0.  }  /\  ( K  .(+)  L )  =  B ) )
Distinct variable groups:    x, B    x, G    x, O    x, M    x, N    ph, x    x,  .0.
Allowed substitution hints:    .(+) ( x)    K( x)    L( x)

Proof of Theorem ablfacrp
Dummy variables  a 
b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfacrp.k . . . . . 6  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
2 ablfacrp.l . . . . . 6  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
31, 2ineq12i 3812 . . . . 5  |-  ( K  i^i  L )  =  ( { x  e.  B  |  ( O `
 x )  ||  M }  i^i  { x  e.  B  |  ( O `  x )  ||  N } )
4 inrab 3899 . . . . 5  |-  ( { x  e.  B  | 
( O `  x
)  ||  M }  i^i  { x  e.  B  |  ( O `  x )  ||  N } )  =  {
x  e.  B  | 
( ( O `  x )  ||  M  /\  ( O `  x
)  ||  N ) }
53, 4eqtri 2644 . . . 4  |-  ( K  i^i  L )  =  { x  e.  B  |  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) }
6 ablfacrp.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
7 ablfacrp.o . . . . . . . . . . . . . 14  |-  O  =  ( od `  G
)
86, 7odcl 17955 . . . . . . . . . . . . 13  |-  ( x  e.  B  ->  ( O `  x )  e.  NN0 )
98adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  B )  ->  ( O `  x )  e.  NN0 )
109nn0zd 11480 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  ( O `  x )  e.  ZZ )
11 ablfacrp.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
1211nnzd 11481 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
1312adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  M  e.  ZZ )
14 ablfacrp.n . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
1514nnzd 11481 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
1615adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  ZZ )
17 dvdsgcd 15261 . . . . . . . . . . 11  |-  ( ( ( O `  x
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( O `  x )  ||  M  /\  ( O `  x
)  ||  N )  ->  ( O `  x
)  ||  ( M  gcd  N ) ) )
1810, 13, 16, 17syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( O `  x )  ||  M  /\  ( O `  x
)  ||  N )  ->  ( O `  x
)  ||  ( M  gcd  N ) ) )
19183impia 1261 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  ( O `  x )  ||  ( M  gcd  N
) )
20 ablfacrp.1 . . . . . . . . . 10  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
21203ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  ( M  gcd  N )  =  1 )
2219, 21breqtrd 4679 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  ( O `  x )  ||  1 )
23 simp2 1062 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  x  e.  B )
24 dvds1 15041 . . . . . . . . 9  |-  ( ( O `  x )  e.  NN0  ->  ( ( O `  x ) 
||  1  <->  ( O `  x )  =  1 ) )
2523, 8, 243syl 18 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  (
( O `  x
)  ||  1  <->  ( O `  x )  =  1 ) )
2622, 25mpbid 222 . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  ( O `  x )  =  1 )
27 ablfacrp.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  Abel )
28 ablgrp 18198 . . . . . . . . . 10  |-  ( G  e.  Abel  ->  G  e. 
Grp )
2927, 28syl 17 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
30293ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  G  e.  Grp )
31 ablfacrp.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
327, 31, 6odeq1 17977 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( O `  x )  =  1  <-> 
x  =  .0.  )
)
3330, 23, 32syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  (
( O `  x
)  =  1  <->  x  =  .0.  ) )
3426, 33mpbid 222 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  x  =  .0.  )
35 velsn 4193 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
3634, 35sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) )  ->  x  e.  {  .0.  } )
3736rabssdv 3682 . . . 4  |-  ( ph  ->  { x  e.  B  |  ( ( O `
 x )  ||  M  /\  ( O `  x )  ||  N
) }  C_  {  .0.  } )
385, 37syl5eqss 3649 . . 3  |-  ( ph  ->  ( K  i^i  L
)  C_  {  .0.  } )
397, 6oddvdssubg 18258 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  M  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G ) )
4027, 12, 39syl2anc 693 . . . . . . 7  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G
) )
411, 40syl5eqel 2705 . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
4231subg0cl 17602 . . . . . 6  |-  ( K  e.  (SubGrp `  G
)  ->  .0.  e.  K )
4341, 42syl 17 . . . . 5  |-  ( ph  ->  .0.  e.  K )
447, 6oddvdssubg 18258 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
4527, 15, 44syl2anc 693 . . . . . . 7  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
) )
462, 45syl5eqel 2705 . . . . . 6  |-  ( ph  ->  L  e.  (SubGrp `  G ) )
4731subg0cl 17602 . . . . . 6  |-  ( L  e.  (SubGrp `  G
)  ->  .0.  e.  L )
4846, 47syl 17 . . . . 5  |-  ( ph  ->  .0.  e.  L )
4943, 48elind 3798 . . . 4  |-  ( ph  ->  .0.  e.  ( K  i^i  L ) )
5049snssd 4340 . . 3  |-  ( ph  ->  {  .0.  }  C_  ( K  i^i  L ) )
5138, 50eqssd 3620 . 2  |-  ( ph  ->  ( K  i^i  L
)  =  {  .0.  } )
52 ablfacrp.s . . . . . 6  |-  .(+)  =  (
LSSum `  G )
5352lsmsubg2 18262 . . . . 5  |-  ( ( G  e.  Abel  /\  K  e.  (SubGrp `  G )  /\  L  e.  (SubGrp `  G ) )  -> 
( K  .(+)  L )  e.  (SubGrp `  G
) )
5427, 41, 46, 53syl3anc 1326 . . . 4  |-  ( ph  ->  ( K  .(+)  L )  e.  (SubGrp `  G
) )
556subgss 17595 . . . 4  |-  ( ( K  .(+)  L )  e.  (SubGrp `  G )  ->  ( K  .(+)  L ) 
C_  B )
5654, 55syl 17 . . 3  |-  ( ph  ->  ( K  .(+)  L ) 
C_  B )
57 eqid 2622 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
586, 57mulg1 17548 . . . . . . 7  |-  ( g  e.  B  ->  (
1 (.g `  G ) g )  =  g )
5958adantl 482 . . . . . 6  |-  ( (
ph  /\  g  e.  B )  ->  (
1 (.g `  G ) g )  =  g )
60 bezout 15260 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) ) )
6112, 15, 60syl2anc 693 . . . . . . . 8  |-  ( ph  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) ) )
6261adantr 481 . . . . . . 7  |-  ( (
ph  /\  g  e.  B )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) ) )
6320ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( M  gcd  N )  =  1 )
6463eqeq1d 2624 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) )  <->  1  =  ( ( M  x.  a
)  +  ( N  x.  b ) ) ) )
6512ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  M  e.  ZZ )
66 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  a  e.  ZZ )
6765, 66zmulcld 11488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( M  x.  a )  e.  ZZ )
6867zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( M  x.  a )  e.  CC )
6915ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  N  e.  ZZ )
70 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  b  e.  ZZ )
7169, 70zmulcld 11488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( N  x.  b )  e.  ZZ )
7271zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( N  x.  b )  e.  CC )
7368, 72addcomd 10238 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  x.  a )  +  ( N  x.  b ) )  =  ( ( N  x.  b )  +  ( M  x.  a ) ) )
7473oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( M  x.  a
)  +  ( N  x.  b ) ) (.g `  G ) g )  =  ( ( ( N  x.  b
)  +  ( M  x.  a ) ) (.g `  G ) g ) )
7529ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  G  e.  Grp )
76 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  g  e.  B )
77 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
786, 57, 77mulgdir 17573 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( N  x.  b )  e.  ZZ  /\  ( M  x.  a
)  e.  ZZ  /\  g  e.  B )
)  ->  ( (
( N  x.  b
)  +  ( M  x.  a ) ) (.g `  G ) g )  =  ( ( ( N  x.  b
) (.g `  G ) g ) ( +g  `  G
) ( ( M  x.  a ) (.g `  G ) g ) ) )
7975, 71, 67, 76, 78syl13anc 1328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( N  x.  b
)  +  ( M  x.  a ) ) (.g `  G ) g )  =  ( ( ( N  x.  b
) (.g `  G ) g ) ( +g  `  G
) ( ( M  x.  a ) (.g `  G ) g ) ) )
8074, 79eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( M  x.  a
)  +  ( N  x.  b ) ) (.g `  G ) g )  =  ( ( ( N  x.  b
) (.g `  G ) g ) ( +g  `  G
) ( ( M  x.  a ) (.g `  G ) g ) ) )
8141ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  K  e.  (SubGrp `  G ) )
8246ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  L  e.  (SubGrp `  G ) )
836, 57mulgcl 17559 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( N  x.  b
)  e.  ZZ  /\  g  e.  B )  ->  ( ( N  x.  b ) (.g `  G
) g )  e.  B )
8475, 71, 76, 83syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( N  x.  b )
(.g `  G ) g )  e.  B )
85 ablfacrp.2 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
8611, 14nnmulcld 11068 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( M  x.  N
)  e.  NN )
8786nnnn0d 11351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( M  x.  N
)  e.  NN0 )
8885, 87eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
89 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Base `  G )  e.  _V
906, 89eqeltri 2697 . . . . . . . . . . . . . . . . . . . . 21  |-  B  e. 
_V
91 hashclb 13149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
9388, 92sylibr 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  e.  Fin )
9493ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  B  e.  Fin )
956, 7oddvds2 17983 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  g  e.  B )  ->  ( O `  g )  ||  ( # `  B
) )
9675, 94, 76, 95syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  ( # `
 B ) )
9785ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( # `  B
)  =  ( M  x.  N ) )
9896, 97breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  ( M  x.  N )
)
996, 7odcl 17955 . . . . . . . . . . . . . . . . . . 19  |-  ( g  e.  B  ->  ( O `  g )  e.  NN0 )
10099ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  e.  NN0 )
101100nn0zd 11480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  e.  ZZ )
10265, 69zmulcld 11488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( M  x.  N )  e.  ZZ )
103 dvdsmultr1 15019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( O `  g
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( O `  g )  ||  ( M  x.  N )  ->  ( O `  g
)  ||  ( ( M  x.  N )  x.  b ) ) )
104101, 102, 70, 103syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( O `  g )  ||  ( M  x.  N
)  ->  ( O `  g )  ||  (
( M  x.  N
)  x.  b ) ) )
10598, 104mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  (
( M  x.  N
)  x.  b ) )
10665zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  M  e.  CC )
10769zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  N  e.  CC )
10870zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  b  e.  CC )
109106, 107, 108mulassd 10063 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  x.  N )  x.  b )  =  ( M  x.  ( N  x.  b ) ) )
110105, 109breqtrd 4679 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  ( M  x.  ( N  x.  b ) ) )
1116, 7, 57odmulgid 17971 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  g  e.  B  /\  ( N  x.  b
)  e.  ZZ )  /\  M  e.  ZZ )  ->  ( ( O `
 ( ( N  x.  b ) (.g `  G ) g ) )  ||  M  <->  ( O `  g )  ||  ( M  x.  ( N  x.  b ) ) ) )
11275, 76, 71, 65, 111syl31anc 1329 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( O `  ( ( N  x.  b )
(.g `  G ) g ) )  ||  M  <->  ( O `  g ) 
||  ( M  x.  ( N  x.  b
) ) ) )
113110, 112mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  ( ( N  x.  b ) (.g `  G
) g ) ) 
||  M )
114 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( x  =  ( ( N  x.  b ) (.g `  G ) g )  ->  ( O `  x )  =  ( O `  ( ( N  x.  b ) (.g `  G ) g ) ) )
115114breq1d 4663 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( N  x.  b ) (.g `  G ) g )  ->  ( ( O `
 x )  ||  M 
<->  ( O `  (
( N  x.  b
) (.g `  G ) g ) )  ||  M
) )
116115, 1elrab2 3366 . . . . . . . . . . . . 13  |-  ( ( ( N  x.  b
) (.g `  G ) g )  e.  K  <->  ( (
( N  x.  b
) (.g `  G ) g )  e.  B  /\  ( O `  ( ( N  x.  b ) (.g `  G ) g ) )  ||  M
) )
11784, 113, 116sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( N  x.  b )
(.g `  G ) g )  e.  K )
1186, 57mulgcl 17559 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( M  x.  a
)  e.  ZZ  /\  g  e.  B )  ->  ( ( M  x.  a ) (.g `  G
) g )  e.  B )
11975, 67, 76, 118syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  x.  a )
(.g `  G ) g )  e.  B )
120 dvdsmultr1 15019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( O `  g
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  a  e.  ZZ )  ->  ( ( O `  g )  ||  ( M  x.  N )  ->  ( O `  g
)  ||  ( ( M  x.  N )  x.  a ) ) )
121101, 102, 66, 120syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( O `  g )  ||  ( M  x.  N
)  ->  ( O `  g )  ||  (
( M  x.  N
)  x.  a ) ) )
12298, 121mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  (
( M  x.  N
)  x.  a ) )
123 zcn 11382 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ZZ  ->  a  e.  CC )
124123ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  a  e.  CC )
125 mulass 10024 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  a  e.  CC )  ->  (
( M  x.  N
)  x.  a )  =  ( M  x.  ( N  x.  a
) ) )
126 mul12 10202 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  a  e.  CC )  ->  ( M  x.  ( N  x.  a ) )  =  ( N  x.  ( M  x.  a )
) )
127125, 126eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  a  e.  CC )  ->  (
( M  x.  N
)  x.  a )  =  ( N  x.  ( M  x.  a
) ) )
128106, 107, 124, 127syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  x.  N )  x.  a )  =  ( N  x.  ( M  x.  a ) ) )
129122, 128breqtrd 4679 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  g )  ||  ( N  x.  ( M  x.  a ) ) )
1306, 7, 57odmulgid 17971 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  g  e.  B  /\  ( M  x.  a
)  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( O `
 ( ( M  x.  a ) (.g `  G ) g ) )  ||  N  <->  ( O `  g )  ||  ( N  x.  ( M  x.  a ) ) ) )
13175, 76, 67, 69, 130syl31anc 1329 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( O `  ( ( M  x.  a )
(.g `  G ) g ) )  ||  N  <->  ( O `  g ) 
||  ( N  x.  ( M  x.  a
) ) ) )
132129, 131mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( O `  ( ( M  x.  a ) (.g `  G
) g ) ) 
||  N )
133 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( x  =  ( ( M  x.  a ) (.g `  G ) g )  ->  ( O `  x )  =  ( O `  ( ( M  x.  a ) (.g `  G ) g ) ) )
134133breq1d 4663 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( M  x.  a ) (.g `  G ) g )  ->  ( ( O `
 x )  ||  N 
<->  ( O `  (
( M  x.  a
) (.g `  G ) g ) )  ||  N
) )
135134, 2elrab2 3366 . . . . . . . . . . . . 13  |-  ( ( ( M  x.  a
) (.g `  G ) g )  e.  L  <->  ( (
( M  x.  a
) (.g `  G ) g )  e.  B  /\  ( O `  ( ( M  x.  a ) (.g `  G ) g ) )  ||  N
) )
136119, 132, 135sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  x.  a )
(.g `  G ) g )  e.  L )
13777, 52lsmelvali 18065 . . . . . . . . . . . 12  |-  ( ( ( K  e.  (SubGrp `  G )  /\  L  e.  (SubGrp `  G )
)  /\  ( (
( N  x.  b
) (.g `  G ) g )  e.  K  /\  ( ( M  x.  a ) (.g `  G
) g )  e.  L ) )  -> 
( ( ( N  x.  b ) (.g `  G ) g ) ( +g  `  G
) ( ( M  x.  a ) (.g `  G ) g ) )  e.  ( K 
.(+)  L ) )
13881, 82, 117, 136, 137syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( N  x.  b
) (.g `  G ) g ) ( +g  `  G
) ( ( M  x.  a ) (.g `  G ) g ) )  e.  ( K 
.(+)  L ) )
13980, 138eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( M  x.  a
)  +  ( N  x.  b ) ) (.g `  G ) g )  e.  ( K 
.(+)  L ) )
140 oveq1 6657 . . . . . . . . . . 11  |-  ( 1  =  ( ( M  x.  a )  +  ( N  x.  b
) )  ->  (
1 (.g `  G ) g )  =  ( ( ( M  x.  a
)  +  ( N  x.  b ) ) (.g `  G ) g ) )
141140eleq1d 2686 . . . . . . . . . 10  |-  ( 1  =  ( ( M  x.  a )  +  ( N  x.  b
) )  ->  (
( 1 (.g `  G
) g )  e.  ( K  .(+)  L )  <-> 
( ( ( M  x.  a )  +  ( N  x.  b
) ) (.g `  G
) g )  e.  ( K  .(+)  L ) ) )
142139, 141syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( 1  =  ( ( M  x.  a )  +  ( N  x.  b
) )  ->  (
1 (.g `  G ) g )  e.  ( K 
.(+)  L ) ) )
14364, 142sylbid 230 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  B )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) )  ->  ( 1 (.g `  G ) g )  e.  ( K 
.(+)  L ) ) )
144143rexlimdvva 3038 . . . . . . 7  |-  ( (
ph  /\  g  e.  B )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  a )  +  ( N  x.  b ) )  ->  ( 1 (.g `  G ) g )  e.  ( K 
.(+)  L ) ) )
14562, 144mpd 15 . . . . . 6  |-  ( (
ph  /\  g  e.  B )  ->  (
1 (.g `  G ) g )  e.  ( K 
.(+)  L ) )
14659, 145eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  g  e.  B )  ->  g  e.  ( K  .(+)  L ) )
147146ex 450 . . . 4  |-  ( ph  ->  ( g  e.  B  ->  g  e.  ( K 
.(+)  L ) ) )
148147ssrdv 3609 . . 3  |-  ( ph  ->  B  C_  ( K  .(+) 
L ) )
14956, 148eqssd 3620 . 2  |-  ( ph  ->  ( K  .(+)  L )  =  B )
15051, 149jca 554 1  |-  ( ph  ->  ( ( K  i^i  L )  =  {  .0.  }  /\  ( K  .(+)  L )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   #chash 13117    || cdvds 14983    gcd cgcd 15216   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  .gcmg 17540  SubGrpcsubg 17588   odcod 17944   LSSumclsm 18049   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-cntz 17750  df-od 17948  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  ablfacrp2  18466  ablfac1b  18469
  Copyright terms: Public domain W3C validator