Proof of Theorem cphipval2
Step | Hyp | Ref
| Expression |
1 | | simpl 473 |
. . . . . . . . 9
     |
2 | 1 | 3ad2ant1 1082 |
. . . . . . . 8
   
   |
3 | | cphngp 22973 |
. . . . . . . . . . 11
 NrmGrp |
4 | 3 | adantr 481 |
. . . . . . . . . 10
   NrmGrp |
5 | | ngpgrp 22403 |
. . . . . . . . . 10
 NrmGrp   |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
     |
7 | | cphipfval.x |
. . . . . . . . . 10
     |
8 | | cphipfval.p |
. . . . . . . . . 10
    |
9 | 7, 8 | grpcl 17430 |
. . . . . . . . 9
 
     |
10 | 6, 9 | syl3an1 1359 |
. . . . . . . 8
   
     |
11 | | cphipfval.i |
. . . . . . . . 9
     |
12 | | cphipfval.n |
. . . . . . . . 9
     |
13 | 7, 11, 12 | nmsq 22994 |
. . . . . . . 8
                       |
14 | 2, 10, 13 | syl2anc 693 |
. . . . . . 7
   
     
        
    |
15 | | simp2 1062 |
. . . . . . . 8
   
   |
16 | | simp3 1063 |
. . . . . . . 8
   
   |
17 | 11, 7, 8, 2, 15, 16, 15, 16 | cph2di 23007 |
. . . . . . 7
   
                       |
18 | 14, 17 | eqtrd 2656 |
. . . . . 6
   
     
                     |
19 | | cphipval2.m |
. . . . . . . . . 10
     |
20 | 7, 19 | grpsubcl 17495 |
. . . . . . . . 9
 
     |
21 | 6, 20 | syl3an1 1359 |
. . . . . . . 8
   
     |
22 | 7, 11, 12 | nmsq 22994 |
. . . . . . . 8
                       |
23 | 2, 21, 22 | syl2anc 693 |
. . . . . . 7
   
     
        
    |
24 | 11, 7, 19, 2, 15, 16, 15, 16 | cph2subdi 23010 |
. . . . . . 7
   
                       |
25 | 23, 24 | eqtrd 2656 |
. . . . . 6
   
     
                     |
26 | 18, 25 | oveq12d 6668 |
. . . . 5
   
                                                       |
27 | 7, 11 | reipcl 22997 |
. . . . . . . . . 10
       |
28 | 27 | adantlr 751 |
. . . . . . . . 9
   
     |
29 | 28 | recnd 10068 |
. . . . . . . 8
   
     |
30 | 29 | 3adant3 1081 |
. . . . . . 7
   
     |
31 | 7, 11 | reipcl 22997 |
. . . . . . . . . 10
       |
32 | 31 | adantlr 751 |
. . . . . . . . 9
   
     |
33 | 32 | recnd 10068 |
. . . . . . . 8
   
     |
34 | 33 | 3adant2 1080 |
. . . . . . 7
   
     |
35 | 30, 34 | addcld 10059 |
. . . . . 6
   
         |
36 | 7, 11 | cphipcl 22991 |
. . . . . . . 8
 
     |
37 | 1, 36 | syl3an1 1359 |
. . . . . . 7
   
     |
38 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
 
     |
39 | 1, 38 | syl3an1 1359 |
. . . . . . . 8
   
     |
40 | 39 | 3com23 1271 |
. . . . . . 7
   
     |
41 | 37, 40 | addcld 10059 |
. . . . . 6
   
         |
42 | 35, 41, 41 | pnncand 10431 |
. . . . 5
   
                                               |
43 | 26, 42 | eqtrd 2656 |
. . . 4
   
                                       |
44 | 6 | 3ad2ant1 1082 |
. . . . . . . . . 10
   
   |
45 | | cphlmod 22974 |
. . . . . . . . . . . . . 14
   |
46 | 45 | adantr 481 |
. . . . . . . . . . . . 13
     |
47 | 46 | adantr 481 |
. . . . . . . . . . . 12
   
   |
48 | | simplr 792 |
. . . . . . . . . . . 12
   
   |
49 | | simpr 477 |
. . . . . . . . . . . 12
   
   |
50 | | cphipval2.f |
. . . . . . . . . . . . 13
Scalar   |
51 | | cphipfval.s |
. . . . . . . . . . . . 13
     |
52 | | cphipval2.k |
. . . . . . . . . . . . 13
     |
53 | 7, 50, 51, 52 | lmodvscl 18880 |
. . . . . . . . . . . 12
 
 
   |
54 | 47, 48, 49, 53 | syl3anc 1326 |
. . . . . . . . . . 11
   
     |
55 | 54 | 3adant2 1080 |
. . . . . . . . . 10
   
     |
56 | 7, 8 | grpcl 17430 |
. . . . . . . . . 10
 

   
    |
57 | 44, 15, 55, 56 | syl3anc 1326 |
. . . . . . . . 9
   
  
    |
58 | 7, 11, 12 | nmsq 22994 |
. . . . . . . . 9
                     
         |
59 | 2, 57, 58 | syl2anc 693 |
. . . . . . . 8
   
     
            
      |
60 | 11, 7, 8, 2, 15, 55, 15, 55 | cph2di 23007 |
. . . . . . . 8
   
   
              
     
   
      |
61 | 59, 60 | eqtrd 2656 |
. . . . . . 7
   
     
              
     
   
      |
62 | 7, 19 | grpsubcl 17495 |
. . . . . . . . . 10
 

   
    |
63 | 44, 15, 55, 62 | syl3anc 1326 |
. . . . . . . . 9
   
  
    |
64 | 7, 11, 12 | nmsq 22994 |
. . . . . . . . 9
                     
         |
65 | 2, 63, 64 | syl2anc 693 |
. . . . . . . 8
   
     
            
      |
66 | 11, 7, 19, 2, 15, 55, 15, 55 | cph2subdi 23010 |
. . . . . . . 8
   
   
              
     
   
      |
67 | 65, 66 | eqtrd 2656 |
. . . . . . 7
   
     
              
     
   
      |
68 | 61, 67 | oveq12d 6668 |
. . . . . 6
   
       
                         
       
   
           
     
   
       |
69 | 68 | oveq2d 6666 |
. . . . 5
   
       
            
                 
     
   
           
     
   
        |
70 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
  


    
     |
71 | 2, 55, 55, 70 | syl3anc 1326 |
. . . . . . . 8
   
    
    |
72 | 30, 71 | addcld 10059 |
. . . . . . 7
   
      
      |
73 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
 

        |
74 | 2, 15, 55, 73 | syl3anc 1326 |
. . . . . . . 8
   
  
    |
75 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
  

   
   |
76 | 2, 55, 15, 75 | syl3anc 1326 |
. . . . . . . 8
   
       |
77 | 74, 76 | addcld 10059 |
. . . . . . 7
   
   
   
     |
78 | 72, 77, 77 | pnncand 10431 |
. . . . . 6
   
         
     
   
           
     
   
        
   
     
   
      |
79 | 78 | oveq2d 6666 |
. . . . 5
   
          
     
   
           
     
   
          
   
     
   
       |
80 | 7, 51, 11, 50, 52 | cphassir 23015 |
. . . . . . . . 9
   
  
         |
81 | 7, 51, 11, 50, 52 | cphassi 23014 |
. . . . . . . . 9
   
           |
82 | 80, 81 | oveq12d 6668 |
. . . . . . . 8
   
   
   
                |
83 | 82, 82 | oveq12d 6668 |
. . . . . . 7
   
              
   
            
      
          |
84 | 83 | oveq2d 6666 |
. . . . . 6
   
     
   
     
   
              
      
           |
85 | | ax-icn 9995 |
. . . . . . . 8
 |
86 | 85 | a1i 11 |
. . . . . . 7
   
   |
87 | | negicn 10282 |
. . . . . . . . . 10
  |
88 | 87 | a1i 11 |
. . . . . . . . 9
   
    |
89 | 88, 37 | mulcld 10060 |
. . . . . . . 8
   
   
    |
90 | 86, 40 | mulcld 10060 |
. . . . . . . 8
   
       |
91 | 89, 90 | addcld 10059 |
. . . . . . 7
   
              |
92 | 86, 91, 91 | adddid 10064 |
. . . . . 6
   
                     
                           
       |
93 | 86, 89, 90 | adddid 10064 |
. . . . . . . . 9
   
         
              
      |
94 | 85, 85 | mulneg2i 10477 |
. . . . . . . . . . . . 13
       |
95 | | ixi 10656 |
. . . . . . . . . . . . . 14
    |
96 | 95 | negeqi 10274 |
. . . . . . . . . . . . 13
 
    |
97 | | negneg1e1 11128 |
. . . . . . . . . . . . 13
   |
98 | 94, 96, 97 | 3eqtri 2648 |
. . . . . . . . . . . 12
    |
99 | 98 | oveq1i 6660 |
. . . . . . . . . . 11
   
        |
100 | 86, 88, 37 | mulassd 10063 |
. . . . . . . . . . 11
   
                 |
101 | 99, 100 | syl5reqr 2671 |
. . . . . . . . . 10
   
              |
102 | 95 | oveq1i 6660 |
. . . . . . . . . . 11
            |
103 | 86, 86, 40 | mulassd 10063 |
. . . . . . . . . . 11
   
   
    
      |
104 | 102, 103 | syl5reqr 2671 |
. . . . . . . . . 10
   
  
           |
105 | 101, 104 | oveq12d 6668 |
. . . . . . . . 9
   
           
                 |
106 | 93, 105 | eqtrd 2656 |
. . . . . . . 8
   
         
                 |
107 | 106, 106 | oveq12d 6668 |
. . . . . . 7
   
                       
                               |
108 | 37 | mulid2d 10058 |
. . . . . . . . . 10
   
         |
109 | 108 | oveq1d 6665 |
. . . . . . . . 9
   
                       |
110 | | addneg1mul 10472 |
. . . . . . . . . 10
    
                   |
111 | 37, 40, 110 | syl2anc 693 |
. . . . . . . . 9
   
                  |
112 | 109, 111 | eqtrd 2656 |
. . . . . . . 8
   
                    |
113 | 112, 112 | oveq12d 6668 |
. . . . . . 7
   
                                   
     |
114 | 107, 113 | eqtrd 2656 |
. . . . . 6
   
                       
                     |
115 | 84, 92, 114 | 3eqtrd 2660 |
. . . . 5
   
     
   
     
   
               
     |
116 | 69, 79, 115 | 3eqtrd 2660 |
. . . 4
   
       
            
            
           |
117 | 43, 116 | oveq12d 6668 |
. . 3
   
                 
                        
                                   
      |
118 | 117 | oveq1d 6665 |
. 2
   
                  
                        
                                     
       |
119 | 37, 40 | subcld 10392 |
. . . . 5
   
         |
120 | 41, 41, 119, 119 | add4d 10264 |
. . . 4
   
                          
                             
      |
121 | 37, 40, 37 | ppncand 10432 |
. . . . 5
   
                       |
122 | 121, 121 | oveq12d 6668 |
. . . 4
   
                          
                    |
123 | 120, 122 | eqtrd 2656 |
. . 3
   
                          
                    |
124 | 123 | oveq1d 6665 |
. 2
   
                     
                             |
125 | 37 | 2timesd 11275 |
. . . . . . 7
   
             |
126 | 125 | eqcomd 2628 |
. . . . . 6
   
             |
127 | 126, 126 | oveq12d 6668 |
. . . . 5
   
                           |
128 | | 2cnd 11093 |
. . . . . 6
   
   |
129 | 128, 128,
37 | adddird 10065 |
. . . . 5
   
                   |
130 | | 2p2e4 11144 |
. . . . . . 7
   |
131 | 130 | a1i 11 |
. . . . . 6
   
     |
132 | 131 | oveq1d 6665 |
. . . . 5
   
             |
133 | 127, 129,
132 | 3eqtr2d 2662 |
. . . 4
   
                     |
134 | 133 | oveq1d 6665 |
. . 3
   
                         |
135 | | 4cn 11098 |
. . . . 5
 |
136 | 135 | a1i 11 |
. . . 4
   
   |
137 | | 4ne0 11117 |
. . . . 5
 |
138 | 137 | a1i 11 |
. . . 4
   
   |
139 | 37, 136, 138 | divcan3d 10806 |
. . 3
   
           |
140 | 134, 139 | eqtrd 2656 |
. 2
   
                     |
141 | 118, 124,
140 | 3eqtrrd 2661 |
1
   
                                  
                        |