Proof of Theorem cphipval2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . . . . . . 9
     |
| 2 | 1 | 3ad2ant1 1082 |
. . . . . . . 8
   
   |
| 3 | | cphngp 22973 |
. . . . . . . . . . 11
 NrmGrp |
| 4 | 3 | adantr 481 |
. . . . . . . . . 10
   NrmGrp |
| 5 | | ngpgrp 22403 |
. . . . . . . . . 10
 NrmGrp   |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
     |
| 7 | | cphipfval.x |
. . . . . . . . . 10
     |
| 8 | | cphipfval.p |
. . . . . . . . . 10
    |
| 9 | 7, 8 | grpcl 17430 |
. . . . . . . . 9
 
     |
| 10 | 6, 9 | syl3an1 1359 |
. . . . . . . 8
   
     |
| 11 | | cphipfval.i |
. . . . . . . . 9
     |
| 12 | | cphipfval.n |
. . . . . . . . 9
     |
| 13 | 7, 11, 12 | nmsq 22994 |
. . . . . . . 8
                       |
| 14 | 2, 10, 13 | syl2anc 693 |
. . . . . . 7
   
     
        
    |
| 15 | | simp2 1062 |
. . . . . . . 8
   
   |
| 16 | | simp3 1063 |
. . . . . . . 8
   
   |
| 17 | 11, 7, 8, 2, 15, 16, 15, 16 | cph2di 23007 |
. . . . . . 7
   
                       |
| 18 | 14, 17 | eqtrd 2656 |
. . . . . 6
   
     
                     |
| 19 | | cphipval2.m |
. . . . . . . . . 10
     |
| 20 | 7, 19 | grpsubcl 17495 |
. . . . . . . . 9
 
     |
| 21 | 6, 20 | syl3an1 1359 |
. . . . . . . 8
   
     |
| 22 | 7, 11, 12 | nmsq 22994 |
. . . . . . . 8
                       |
| 23 | 2, 21, 22 | syl2anc 693 |
. . . . . . 7
   
     
        
    |
| 24 | 11, 7, 19, 2, 15, 16, 15, 16 | cph2subdi 23010 |
. . . . . . 7
   
                       |
| 25 | 23, 24 | eqtrd 2656 |
. . . . . 6
   
     
                     |
| 26 | 18, 25 | oveq12d 6668 |
. . . . 5
   
                                                       |
| 27 | 7, 11 | reipcl 22997 |
. . . . . . . . . 10
       |
| 28 | 27 | adantlr 751 |
. . . . . . . . 9
   
     |
| 29 | 28 | recnd 10068 |
. . . . . . . 8
   
     |
| 30 | 29 | 3adant3 1081 |
. . . . . . 7
   
     |
| 31 | 7, 11 | reipcl 22997 |
. . . . . . . . . 10
       |
| 32 | 31 | adantlr 751 |
. . . . . . . . 9
   
     |
| 33 | 32 | recnd 10068 |
. . . . . . . 8
   
     |
| 34 | 33 | 3adant2 1080 |
. . . . . . 7
   
     |
| 35 | 30, 34 | addcld 10059 |
. . . . . 6
   
         |
| 36 | 7, 11 | cphipcl 22991 |
. . . . . . . 8
 
     |
| 37 | 1, 36 | syl3an1 1359 |
. . . . . . 7
   
     |
| 38 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
 
     |
| 39 | 1, 38 | syl3an1 1359 |
. . . . . . . 8
   
     |
| 40 | 39 | 3com23 1271 |
. . . . . . 7
   
     |
| 41 | 37, 40 | addcld 10059 |
. . . . . 6
   
         |
| 42 | 35, 41, 41 | pnncand 10431 |
. . . . 5
   
                                               |
| 43 | 26, 42 | eqtrd 2656 |
. . . 4
   
                                       |
| 44 | 6 | 3ad2ant1 1082 |
. . . . . . . . . 10
   
   |
| 45 | | cphlmod 22974 |
. . . . . . . . . . . . . 14
   |
| 46 | 45 | adantr 481 |
. . . . . . . . . . . . 13
     |
| 47 | 46 | adantr 481 |
. . . . . . . . . . . 12
   
   |
| 48 | | simplr 792 |
. . . . . . . . . . . 12
   
   |
| 49 | | simpr 477 |
. . . . . . . . . . . 12
   
   |
| 50 | | cphipval2.f |
. . . . . . . . . . . . 13
Scalar   |
| 51 | | cphipfval.s |
. . . . . . . . . . . . 13
     |
| 52 | | cphipval2.k |
. . . . . . . . . . . . 13
     |
| 53 | 7, 50, 51, 52 | lmodvscl 18880 |
. . . . . . . . . . . 12
 
 
   |
| 54 | 47, 48, 49, 53 | syl3anc 1326 |
. . . . . . . . . . 11
   
     |
| 55 | 54 | 3adant2 1080 |
. . . . . . . . . 10
   
     |
| 56 | 7, 8 | grpcl 17430 |
. . . . . . . . . 10
 

   
    |
| 57 | 44, 15, 55, 56 | syl3anc 1326 |
. . . . . . . . 9
   
  
    |
| 58 | 7, 11, 12 | nmsq 22994 |
. . . . . . . . 9
                     
         |
| 59 | 2, 57, 58 | syl2anc 693 |
. . . . . . . 8
   
     
            
      |
| 60 | 11, 7, 8, 2, 15, 55, 15, 55 | cph2di 23007 |
. . . . . . . 8
   
   
              
     
   
      |
| 61 | 59, 60 | eqtrd 2656 |
. . . . . . 7
   
     
              
     
   
      |
| 62 | 7, 19 | grpsubcl 17495 |
. . . . . . . . . 10
 

   
    |
| 63 | 44, 15, 55, 62 | syl3anc 1326 |
. . . . . . . . 9
   
  
    |
| 64 | 7, 11, 12 | nmsq 22994 |
. . . . . . . . 9
                     
         |
| 65 | 2, 63, 64 | syl2anc 693 |
. . . . . . . 8
   
     
            
      |
| 66 | 11, 7, 19, 2, 15, 55, 15, 55 | cph2subdi 23010 |
. . . . . . . 8
   
   
              
     
   
      |
| 67 | 65, 66 | eqtrd 2656 |
. . . . . . 7
   
     
              
     
   
      |
| 68 | 61, 67 | oveq12d 6668 |
. . . . . 6
   
       
                         
       
   
           
     
   
       |
| 69 | 68 | oveq2d 6666 |
. . . . 5
   
       
            
                 
     
   
           
     
   
        |
| 70 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
  


    
     |
| 71 | 2, 55, 55, 70 | syl3anc 1326 |
. . . . . . . 8
   
    
    |
| 72 | 30, 71 | addcld 10059 |
. . . . . . 7
   
      
      |
| 73 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
 

        |
| 74 | 2, 15, 55, 73 | syl3anc 1326 |
. . . . . . . 8
   
  
    |
| 75 | 7, 11 | cphipcl 22991 |
. . . . . . . . 9
  

   
   |
| 76 | 2, 55, 15, 75 | syl3anc 1326 |
. . . . . . . 8
   
       |
| 77 | 74, 76 | addcld 10059 |
. . . . . . 7
   
   
   
     |
| 78 | 72, 77, 77 | pnncand 10431 |
. . . . . 6
   
         
     
   
           
     
   
        
   
     
   
      |
| 79 | 78 | oveq2d 6666 |
. . . . 5
   
          
     
   
           
     
   
          
   
     
   
       |
| 80 | 7, 51, 11, 50, 52 | cphassir 23015 |
. . . . . . . . 9
   
  
         |
| 81 | 7, 51, 11, 50, 52 | cphassi 23014 |
. . . . . . . . 9
   
           |
| 82 | 80, 81 | oveq12d 6668 |
. . . . . . . 8
   
   
   
                |
| 83 | 82, 82 | oveq12d 6668 |
. . . . . . 7
   
              
   
            
      
          |
| 84 | 83 | oveq2d 6666 |
. . . . . 6
   
     
   
     
   
              
      
           |
| 85 | | ax-icn 9995 |
. . . . . . . 8
 |
| 86 | 85 | a1i 11 |
. . . . . . 7
   
   |
| 87 | | negicn 10282 |
. . . . . . . . . 10
  |
| 88 | 87 | a1i 11 |
. . . . . . . . 9
   
    |
| 89 | 88, 37 | mulcld 10060 |
. . . . . . . 8
   
   
    |
| 90 | 86, 40 | mulcld 10060 |
. . . . . . . 8
   
       |
| 91 | 89, 90 | addcld 10059 |
. . . . . . 7
   
              |
| 92 | 86, 91, 91 | adddid 10064 |
. . . . . 6
   
                     
                           
       |
| 93 | 86, 89, 90 | adddid 10064 |
. . . . . . . . 9
   
         
              
      |
| 94 | 85, 85 | mulneg2i 10477 |
. . . . . . . . . . . . 13
       |
| 95 | | ixi 10656 |
. . . . . . . . . . . . . 14
    |
| 96 | 95 | negeqi 10274 |
. . . . . . . . . . . . 13
 
    |
| 97 | | negneg1e1 11128 |
. . . . . . . . . . . . 13
   |
| 98 | 94, 96, 97 | 3eqtri 2648 |
. . . . . . . . . . . 12
    |
| 99 | 98 | oveq1i 6660 |
. . . . . . . . . . 11
   
        |
| 100 | 86, 88, 37 | mulassd 10063 |
. . . . . . . . . . 11
   
                 |
| 101 | 99, 100 | syl5reqr 2671 |
. . . . . . . . . 10
   
              |
| 102 | 95 | oveq1i 6660 |
. . . . . . . . . . 11
            |
| 103 | 86, 86, 40 | mulassd 10063 |
. . . . . . . . . . 11
   
   
    
      |
| 104 | 102, 103 | syl5reqr 2671 |
. . . . . . . . . 10
   
  
           |
| 105 | 101, 104 | oveq12d 6668 |
. . . . . . . . 9
   
           
                 |
| 106 | 93, 105 | eqtrd 2656 |
. . . . . . . 8
   
         
                 |
| 107 | 106, 106 | oveq12d 6668 |
. . . . . . 7
   
                       
                               |
| 108 | 37 | mulid2d 10058 |
. . . . . . . . . 10
   
         |
| 109 | 108 | oveq1d 6665 |
. . . . . . . . 9
   
                       |
| 110 | | addneg1mul 10472 |
. . . . . . . . . 10
    
                   |
| 111 | 37, 40, 110 | syl2anc 693 |
. . . . . . . . 9
   
                  |
| 112 | 109, 111 | eqtrd 2656 |
. . . . . . . 8
   
                    |
| 113 | 112, 112 | oveq12d 6668 |
. . . . . . 7
   
                                   
     |
| 114 | 107, 113 | eqtrd 2656 |
. . . . . 6
   
                       
                     |
| 115 | 84, 92, 114 | 3eqtrd 2660 |
. . . . 5
   
     
   
     
   
               
     |
| 116 | 69, 79, 115 | 3eqtrd 2660 |
. . . 4
   
       
            
            
           |
| 117 | 43, 116 | oveq12d 6668 |
. . 3
   
                 
                        
                                   
      |
| 118 | 117 | oveq1d 6665 |
. 2
   
                  
                        
                                     
       |
| 119 | 37, 40 | subcld 10392 |
. . . . 5
   
         |
| 120 | 41, 41, 119, 119 | add4d 10264 |
. . . 4
   
                          
                             
      |
| 121 | 37, 40, 37 | ppncand 10432 |
. . . . 5
   
                       |
| 122 | 121, 121 | oveq12d 6668 |
. . . 4
   
                          
                    |
| 123 | 120, 122 | eqtrd 2656 |
. . 3
   
                          
                    |
| 124 | 123 | oveq1d 6665 |
. 2
   
                     
                             |
| 125 | 37 | 2timesd 11275 |
. . . . . . 7
   
             |
| 126 | 125 | eqcomd 2628 |
. . . . . 6
   
             |
| 127 | 126, 126 | oveq12d 6668 |
. . . . 5
   
                           |
| 128 | | 2cnd 11093 |
. . . . . 6
   
   |
| 129 | 128, 128,
37 | adddird 10065 |
. . . . 5
   
                   |
| 130 | | 2p2e4 11144 |
. . . . . . 7
   |
| 131 | 130 | a1i 11 |
. . . . . 6
   
     |
| 132 | 131 | oveq1d 6665 |
. . . . 5
   
             |
| 133 | 127, 129,
132 | 3eqtr2d 2662 |
. . . 4
   
                     |
| 134 | 133 | oveq1d 6665 |
. . 3
   
                         |
| 135 | | 4cn 11098 |
. . . . 5
 |
| 136 | 135 | a1i 11 |
. . . 4
   
   |
| 137 | | 4ne0 11117 |
. . . . 5
 |
| 138 | 137 | a1i 11 |
. . . 4
   
   |
| 139 | 37, 136, 138 | divcan3d 10806 |
. . 3
   
           |
| 140 | 134, 139 | eqtrd 2656 |
. 2
   
                     |
| 141 | 118, 124,
140 | 3eqtrrd 2661 |
1
   
                                  
                        |