MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efifo Structured version   Visualization version   Unicode version

Theorem efifo 24293
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efifo.1  |-  F  =  ( z  e.  RR  |->  ( exp `  ( _i  x.  z ) ) )
efifo.2  |-  C  =  ( `' abs " {
1 } )
Assertion
Ref Expression
efifo  |-  F : RR -onto-> C
Distinct variable group:    z, C
Allowed substitution hint:    F( z)

Proof of Theorem efifo
StepHypRef Expression
1 efifo.1 . . . 4  |-  F  =  ( z  e.  RR  |->  ( exp `  ( _i  x.  z ) ) )
2 ax-icn 9995 . . . . . . . 8  |-  _i  e.  CC
3 recn 10026 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  CC )
4 mulcl 10020 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  z  e.  CC )  ->  ( _i  x.  z
)  e.  CC )
52, 3, 4sylancr 695 . . . . . . 7  |-  ( z  e.  RR  ->  (
_i  x.  z )  e.  CC )
6 efcl 14813 . . . . . . 7  |-  ( ( _i  x.  z )  e.  CC  ->  ( exp `  ( _i  x.  z ) )  e.  CC )
75, 6syl 17 . . . . . 6  |-  ( z  e.  RR  ->  ( exp `  ( _i  x.  z ) )  e.  CC )
8 absefi 14926 . . . . . 6  |-  ( z  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  z )
) )  =  1 )
9 absf 14077 . . . . . . 7  |-  abs : CC
--> RR
10 ffn 6045 . . . . . . 7  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
11 fniniseg 6338 . . . . . . 7  |-  ( abs 
Fn  CC  ->  ( ( exp `  ( _i  x.  z ) )  e.  ( `' abs " { 1 } )  <-> 
( ( exp `  (
_i  x.  z )
)  e.  CC  /\  ( abs `  ( exp `  ( _i  x.  z
) ) )  =  1 ) ) )
129, 10, 11mp2b 10 . . . . . 6  |-  ( ( exp `  ( _i  x.  z ) )  e.  ( `' abs " { 1 } )  <-> 
( ( exp `  (
_i  x.  z )
)  e.  CC  /\  ( abs `  ( exp `  ( _i  x.  z
) ) )  =  1 ) )
137, 8, 12sylanbrc 698 . . . . 5  |-  ( z  e.  RR  ->  ( exp `  ( _i  x.  z ) )  e.  ( `' abs " {
1 } ) )
14 efifo.2 . . . . 5  |-  C  =  ( `' abs " {
1 } )
1513, 14syl6eleqr 2712 . . . 4  |-  ( z  e.  RR  ->  ( exp `  ( _i  x.  z ) )  e.  C )
161, 15fmpti 6383 . . 3  |-  F : RR
--> C
17 ffn 6045 . . 3  |-  ( F : RR --> C  ->  F  Fn  RR )
1816, 17ax-mp 5 . 2  |-  F  Fn  RR
19 frn 6053 . . . 4  |-  ( F : RR --> C  ->  ran  F  C_  C )
2016, 19ax-mp 5 . . 3  |-  ran  F  C_  C
21 df-ima 5127 . . . . 5  |-  ( F
" ( 0 (,] ( 2  x.  pi ) ) )  =  ran  ( F  |`  ( 0 (,] (
2  x.  pi ) ) )
221reseq1i 5392 . . . . . . . 8  |-  ( F  |`  ( 0 (,] (
2  x.  pi ) ) )  =  ( ( z  e.  RR  |->  ( exp `  ( _i  x.  z ) ) )  |`  ( 0 (,] ( 2  x.  pi ) ) )
23 0xr 10086 . . . . . . . . . . . 12  |-  0  e.  RR*
24 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
25 pire 24210 . . . . . . . . . . . . 13  |-  pi  e.  RR
2624, 25remulcli 10054 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  e.  RR
27 elioc2 12236 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR )  -> 
( z  e.  ( 0 (,] ( 2  x.  pi ) )  <-> 
( z  e.  RR  /\  0  <  z  /\  z  <_  ( 2  x.  pi ) ) ) )
2823, 26, 27mp2an 708 . . . . . . . . . . 11  |-  ( z  e.  ( 0 (,] ( 2  x.  pi ) )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <_  ( 2  x.  pi ) ) )
2928simp1bi 1076 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,] ( 2  x.  pi ) )  ->  z  e.  RR )
3029ssriv 3607 . . . . . . . . 9  |-  ( 0 (,] ( 2  x.  pi ) )  C_  RR
31 resmpt 5449 . . . . . . . . 9  |-  ( ( 0 (,] ( 2  x.  pi ) ) 
C_  RR  ->  ( ( z  e.  RR  |->  ( exp `  ( _i  x.  z ) ) )  |`  ( 0 (,] ( 2  x.  pi ) ) )  =  ( z  e.  ( 0 (,] (
2  x.  pi ) )  |->  ( exp `  (
_i  x.  z )
) ) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( ( z  e.  RR  |->  ( exp `  ( _i  x.  z ) ) )  |`  ( 0 (,] ( 2  x.  pi ) ) )  =  ( z  e.  ( 0 (,] (
2  x.  pi ) )  |->  ( exp `  (
_i  x.  z )
) )
3322, 32eqtri 2644 . . . . . . 7  |-  ( F  |`  ( 0 (,] (
2  x.  pi ) ) )  =  ( z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z ) ) )
3433rneqi 5352 . . . . . 6  |-  ran  ( F  |`  ( 0 (,] ( 2  x.  pi ) ) )  =  ran  ( z  e.  ( 0 (,] (
2  x.  pi ) )  |->  ( exp `  (
_i  x.  z )
) )
35 0re 10040 . . . . . . . 8  |-  0  e.  RR
36 eqid 2622 . . . . . . . . 9  |-  ( z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z
) ) )  =  ( z  e.  ( 0 (,] ( 2  x.  pi ) ) 
|->  ( exp `  (
_i  x.  z )
) )
3726recni 10052 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  e.  CC
3837addid2i 10224 . . . . . . . . . . 11  |-  ( 0  +  ( 2  x.  pi ) )  =  ( 2  x.  pi )
3938oveq2i 6661 . . . . . . . . . 10  |-  ( 0 (,] ( 0  +  ( 2  x.  pi ) ) )  =  ( 0 (,] (
2  x.  pi ) )
4039eqcomi 2631 . . . . . . . . 9  |-  ( 0 (,] ( 2  x.  pi ) )  =  ( 0 (,] (
0  +  ( 2  x.  pi ) ) )
4136, 14, 40efif1o 24292 . . . . . . . 8  |-  ( 0  e.  RR  ->  (
z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z ) ) ) : ( 0 (,] ( 2  x.  pi ) ) -1-1-onto-> C )
4235, 41ax-mp 5 . . . . . . 7  |-  ( z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z
) ) ) : ( 0 (,] (
2  x.  pi ) ) -1-1-onto-> C
43 f1ofo 6144 . . . . . . 7  |-  ( ( z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z ) ) ) : ( 0 (,] ( 2  x.  pi ) ) -1-1-onto-> C  -> 
( z  e.  ( 0 (,] ( 2  x.  pi ) ) 
|->  ( exp `  (
_i  x.  z )
) ) : ( 0 (,] ( 2  x.  pi ) )
-onto-> C )
44 forn 6118 . . . . . . 7  |-  ( ( z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z ) ) ) : ( 0 (,] ( 2  x.  pi ) ) -onto-> C  ->  ran  ( z  e.  ( 0 (,] (
2  x.  pi ) )  |->  ( exp `  (
_i  x.  z )
) )  =  C )
4542, 43, 44mp2b 10 . . . . . 6  |-  ran  (
z  e.  ( 0 (,] ( 2  x.  pi ) )  |->  ( exp `  ( _i  x.  z ) ) )  =  C
4634, 45eqtri 2644 . . . . 5  |-  ran  ( F  |`  ( 0 (,] ( 2  x.  pi ) ) )  =  C
4721, 46eqtri 2644 . . . 4  |-  ( F
" ( 0 (,] ( 2  x.  pi ) ) )  =  C
48 imassrn 5477 . . . 4  |-  ( F
" ( 0 (,] ( 2  x.  pi ) ) )  C_  ran  F
4947, 48eqsstr3i 3636 . . 3  |-  C  C_  ran  F
5020, 49eqssi 3619 . 2  |-  ran  F  =  C
51 df-fo 5894 . 2  |-  ( F : RR -onto-> C  <->  ( F  Fn  RR  /\  ran  F  =  C ) )
5218, 50, 51mpbir2an 955 1  |-  F : RR -onto-> C
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075   2c2 11070   (,]cioc 12176   abscabs 13974   expce 14792   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  circgrp  24298  circsubm  24299  circtopn  29904  circcn  29905
  Copyright terms: Public domain W3C validator