Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem109 Structured version   Visualization version   Unicode version

Theorem fourierdlem109 40432
Description: The integral of a piecewise continuous periodic function  F is unchanged if the domain is shifted by any value  X. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem109.a  |-  ( ph  ->  A  e.  RR )
fourierdlem109.b  |-  ( ph  ->  B  e.  RR )
fourierdlem109.t  |-  T  =  ( B  -  A
)
fourierdlem109.x  |-  ( ph  ->  X  e.  RR )
fourierdlem109.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem109.m  |-  ( ph  ->  M  e.  NN )
fourierdlem109.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem109.f  |-  ( ph  ->  F : RR --> CC )
fourierdlem109.fper  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
fourierdlem109.fcn  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
fourierdlem109.r  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
fourierdlem109.l  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
fourierdlem109.o  |-  O  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  -  X
)  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
fourierdlem109.h  |-  H  =  ( { ( A  -  X ) ,  ( B  -  X
) }  u.  {
x  e.  ( ( A  -  X ) [,] ( B  -  X ) )  |  E. k  e.  ZZ  ( x  +  (
k  x.  T ) )  e.  ran  Q } )
fourierdlem109.n  |-  N  =  ( ( # `  H
)  -  1 )
fourierdlem109.16  |-  S  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  H ) )
fourierdlem109.17  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
fourierdlem109.18  |-  J  =  ( y  e.  ( A (,] B ) 
|->  if ( y  =  B ,  A , 
y ) )
fourierdlem109.19  |-  I  =  ( x  e.  RR  |->  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j )  <_  ( J `  ( E `  x ) ) } ,  RR ,  <  ) )
Assertion
Ref Expression
fourierdlem109  |-  ( ph  ->  S. ( ( A  -  X ) [,] ( B  -  X
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Distinct variable groups:    x, k    A, f, j, k, y    A, i, x, j, k, y    A, m, p, i, j    B, f, j, k, y    B, i, x    B, m, p    f, E, j, k, y    i, E, x    i, F, j, x, y    f, H, y    x, H    f, I, k, y    i, I, x    i, J, j, x, y    x, L, y    i, M, x, y, j    m, M, p    f, N, j, k, y    i, N, x    m, N, p    Q, f, j, k, y    Q, i, x    Q, m, p    x, R, y    S, f, j, k, y    S, i, x    S, m, p    T, f, j, k, y    T, i, x    T, m, p    f, X, j, y    i, X, m, p    x, X    ph, f,
j, k, y    ph, i, x
Allowed substitution hints:    ph( m, p)    P( x, y, f, i, j, k, m, p)    R( f, i, j, k, m, p)    E( m, p)    F( f, k, m, p)    H( i, j, k, m, p)    I( j, m, p)    J( f, k, m, p)    L( f,
i, j, k, m, p)    M( f, k)    O( x, y, f, i, j, k, m, p)    X( k)

Proof of Theorem fourierdlem109
StepHypRef Expression
1 fourierdlem109.a . . . 4  |-  ( ph  ->  A  e.  RR )
21adantr 481 . . 3  |-  ( (
ph  /\  0  <  X )  ->  A  e.  RR )
3 fourierdlem109.b . . . 4  |-  ( ph  ->  B  e.  RR )
43adantr 481 . . 3  |-  ( (
ph  /\  0  <  X )  ->  B  e.  RR )
5 fourierdlem109.t . . 3  |-  T  =  ( B  -  A
)
6 fourierdlem109.x . . . . 5  |-  ( ph  ->  X  e.  RR )
76adantr 481 . . . 4  |-  ( (
ph  /\  0  <  X )  ->  X  e.  RR )
8 simpr 477 . . . 4  |-  ( (
ph  /\  0  <  X )  ->  0  <  X )
97, 8elrpd 11869 . . 3  |-  ( (
ph  /\  0  <  X )  ->  X  e.  RR+ )
10 fourierdlem109.p . . 3  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
11 fourierdlem109.m . . . 4  |-  ( ph  ->  M  e.  NN )
1211adantr 481 . . 3  |-  ( (
ph  /\  0  <  X )  ->  M  e.  NN )
13 fourierdlem109.q . . . 4  |-  ( ph  ->  Q  e.  ( P `
 M ) )
1413adantr 481 . . 3  |-  ( (
ph  /\  0  <  X )  ->  Q  e.  ( P `  M ) )
15 fourierdlem109.f . . . 4  |-  ( ph  ->  F : RR --> CC )
1615adantr 481 . . 3  |-  ( (
ph  /\  0  <  X )  ->  F : RR
--> CC )
17 fourierdlem109.fper . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
1817adantlr 751 . . 3  |-  ( ( ( ph  /\  0  <  X )  /\  x  e.  RR )  ->  ( F `  ( x  +  T ) )  =  ( F `  x
) )
19 fourierdlem109.fcn . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
2019adantlr 751 . . 3  |-  ( ( ( ph  /\  0  <  X )  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
21 fourierdlem109.r . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
2221adantlr 751 . . 3  |-  ( ( ( ph  /\  0  <  X )  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
) )
23 fourierdlem109.l . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
2423adantlr 751 . . 3  |-  ( ( ( ph  /\  0  <  X )  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) ) )
252, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24fourierdlem108 40431 . 2  |-  ( (
ph  /\  0  <  X )  ->  S. (
( A  -  X
) [,] ( B  -  X ) ) ( F `  x
)  _d x  =  S. ( A [,] B ) ( F `
 x )  _d x )
26 oveq2 6658 . . . . . . 7  |-  ( X  =  0  ->  ( A  -  X )  =  ( A  - 
0 ) )
271recnd 10068 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
2827subid1d 10381 . . . . . . 7  |-  ( ph  ->  ( A  -  0 )  =  A )
2926, 28sylan9eqr 2678 . . . . . 6  |-  ( (
ph  /\  X  = 
0 )  ->  ( A  -  X )  =  A )
30 oveq2 6658 . . . . . . 7  |-  ( X  =  0  ->  ( B  -  X )  =  ( B  - 
0 ) )
313recnd 10068 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
3231subid1d 10381 . . . . . . 7  |-  ( ph  ->  ( B  -  0 )  =  B )
3330, 32sylan9eqr 2678 . . . . . 6  |-  ( (
ph  /\  X  = 
0 )  ->  ( B  -  X )  =  B )
3429, 33oveq12d 6668 . . . . 5  |-  ( (
ph  /\  X  = 
0 )  ->  (
( A  -  X
) [,] ( B  -  X ) )  =  ( A [,] B ) )
3534itgeq1d 40172 . . . 4  |-  ( (
ph  /\  X  = 
0 )  ->  S. ( ( A  -  X ) [,] ( B  -  X )
) ( F `  x )  _d x  =  S. ( A [,] B ) ( F `  x )  _d x )
3635adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  0  <  X )  /\  X  =  0 )  ->  S. ( ( A  -  X ) [,] ( B  -  X ) ) ( F `  x )  _d x  =  S. ( A [,] B
) ( F `  x )  _d x )
37 simpll 790 . . . 4  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  ph )
3837, 6syl 17 . . . . 5  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  X  e.  RR )
39 0red 10041 . . . . 5  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  0  e.  RR )
40 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  -.  X  =  0 )
4140neqned 2801 . . . . 5  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  X  =/=  0 )
42 simplr 792 . . . . 5  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  -.  0  <  X )
4338, 39, 41, 42lttri5d 39513 . . . 4  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  X  <  0 )
446recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  CC )
4527, 44subcld 10392 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  X
)  e.  CC )
4645, 44subnegd 10399 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  -  X )  -  -u X
)  =  ( ( A  -  X )  +  X ) )
4727, 44npcand 10396 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  -  X )  +  X
)  =  A )
4846, 47eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  X )  -  -u X
)  =  A )
4931, 44subcld 10392 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  X
)  e.  CC )
5049, 44subnegd 10399 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  X )  -  -u X
)  =  ( ( B  -  X )  +  X ) )
5131, 44npcand 10396 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  X )  +  X
)  =  B )
5250, 51eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  X )  -  -u X
)  =  B )
5348, 52oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  X )  -  -u X ) [,] (
( B  -  X
)  -  -u X
) )  =  ( A [,] B ) )
5453eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  =  ( ( ( A  -  X
)  -  -u X
) [,] ( ( B  -  X )  -  -u X ) ) )
5554itgeq1d 40172 . . . . . 6  |-  ( ph  ->  S. ( A [,] B ) ( F `
 x )  _d x  =  S. ( ( ( A  -  X )  -  -u X
) [,] ( ( B  -  X )  -  -u X ) ) ( F `  x
)  _d x )
5655adantr 481 . . . . 5  |-  ( (
ph  /\  X  <  0 )  ->  S. ( A [,] B ) ( F `  x
)  _d x  =  S. ( ( ( A  -  X )  -  -u X ) [,] ( ( B  -  X )  -  -u X
) ) ( F `
 x )  _d x )
571, 6resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( A  -  X
)  e.  RR )
5857adantr 481 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  ( A  -  X )  e.  RR )
593, 6resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( B  -  X
)  e.  RR )
6059adantr 481 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  ( B  -  X )  e.  RR )
61 eqid 2622 . . . . . 6  |-  ( ( B  -  X )  -  ( A  -  X ) )  =  ( ( B  -  X )  -  ( A  -  X )
)
626renegcld 10457 . . . . . . . 8  |-  ( ph  -> 
-u X  e.  RR )
6362adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  <  0 )  ->  -u X  e.  RR )
646lt0neg1d 10597 . . . . . . . 8  |-  ( ph  ->  ( X  <  0  <->  0  <  -u X ) )
6564biimpa 501 . . . . . . 7  |-  ( (
ph  /\  X  <  0 )  ->  0  <  -u X )
6663, 65elrpd 11869 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  -u X  e.  RR+ )
67 fourierdlem109.o . . . . . . 7  |-  O  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  -  X
)  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
68 fveq2 6191 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  (
p `  i )  =  ( p `  j ) )
69 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( i  =  j  ->  (
i  +  1 )  =  ( j  +  1 ) )
7069fveq2d 6195 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  (
p `  ( i  +  1 ) )  =  ( p `  ( j  +  1 ) ) )
7168, 70breq12d 4666 . . . . . . . . . . . 12  |-  ( i  =  j  ->  (
( p `  i
)  <  ( p `  ( i  +  1 ) )  <->  ( p `  j )  <  (
p `  ( j  +  1 ) ) ) )
7271cbvralv 3171 . . . . . . . . . . 11  |-  ( A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) )  <->  A. j  e.  ( 0..^ m ) ( p `  j )  <  ( p `  ( j  +  1 ) ) )
7372anbi2i 730 . . . . . . . . . 10  |-  ( ( ( ( p ` 
0 )  =  ( A  -  X )  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) )  <->  ( (
( p `  0
)  =  ( A  -  X )  /\  ( p `  m
)  =  ( B  -  X ) )  /\  A. j  e.  ( 0..^ m ) ( p `  j
)  <  ( p `  ( j  +  1 ) ) ) )
7473a1i 11 . . . . . . . . 9  |-  ( p  e.  ( RR  ^m  ( 0 ... m
) )  ->  (
( ( ( p `
 0 )  =  ( A  -  X
)  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) )  <->  ( (
( p `  0
)  =  ( A  -  X )  /\  ( p `  m
)  =  ( B  -  X ) )  /\  A. j  e.  ( 0..^ m ) ( p `  j
)  <  ( p `  ( j  +  1 ) ) ) ) )
7574rabbiia 3185 . . . . . . . 8  |-  { p  e.  ( RR  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  ( A  -  X )  /\  (
p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) }  =  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  -  X
)  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. j  e.  ( 0..^ m ) ( p `  j
)  <  ( p `  ( j  +  1 ) ) ) }
7675mpteq2i 4741 . . . . . . 7  |-  ( m  e.  NN  |->  { p  e.  ( RR  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  ( A  -  X )  /\  (
p `  m )  =  ( B  -  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  ( A  -  X )  /\  (
p `  m )  =  ( B  -  X ) )  /\  A. j  e.  ( 0..^ m ) ( p `
 j )  < 
( p `  (
j  +  1 ) ) ) } )
7767, 76eqtri 2644 . . . . . 6  |-  O  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  -  X
)  /\  ( p `  m )  =  ( B  -  X ) )  /\  A. j  e.  ( 0..^ m ) ( p `  j
)  <  ( p `  ( j  +  1 ) ) ) } )
7810, 11, 13fourierdlem11 40335 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) )
7978simp3d 1075 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
801, 3, 6, 79ltsub1dd 10639 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  X
)  <  ( B  -  X ) )
81 fourierdlem109.h . . . . . . . . . 10  |-  H  =  ( { ( A  -  X ) ,  ( B  -  X
) }  u.  {
x  e.  ( ( A  -  X ) [,] ( B  -  X ) )  |  E. k  e.  ZZ  ( x  +  (
k  x.  T ) )  e.  ran  Q } )
82 fourierdlem109.n . . . . . . . . . 10  |-  N  =  ( ( # `  H
)  -  1 )
83 fourierdlem109.16 . . . . . . . . . 10  |-  S  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  H ) )
845, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83fourierdlem54 40377 . . . . . . . . 9  |-  ( ph  ->  ( ( N  e.  NN  /\  S  e.  ( O `  N
) )  /\  S  Isom  <  ,  <  (
( 0 ... N
) ,  H ) ) )
8584simpld 475 . . . . . . . 8  |-  ( ph  ->  ( N  e.  NN  /\  S  e.  ( O `
 N ) ) )
8685simpld 475 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
8786adantr 481 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  N  e.  NN )
8885simprd 479 . . . . . . 7  |-  ( ph  ->  S  e.  ( O `
 N ) )
8988adantr 481 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  S  e.  ( O `  N
) )
9015adantr 481 . . . . . 6  |-  ( (
ph  /\  X  <  0 )  ->  F : RR --> CC )
9131, 27, 44nnncan2d 10427 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  -  X )  -  ( A  -  X )
)  =  ( B  -  A ) )
9291, 5syl6eqr 2674 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  -  X )  -  ( A  -  X )
)  =  T )
9392oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( x  +  ( ( B  -  X
)  -  ( A  -  X ) ) )  =  ( x  +  T ) )
9493adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  +  ( ( B  -  X )  -  ( A  -  X
) ) )  =  ( x  +  T
) )
9594fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  ( ( B  -  X )  -  ( A  -  X )
) ) )  =  ( F `  (
x  +  T ) ) )
9695, 17eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  ( ( B  -  X )  -  ( A  -  X )
) ) )  =  ( F `  x
) )
9796adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  X  <  0 )  /\  x  e.  RR )  ->  ( F `  ( x  +  ( ( B  -  X )  -  ( A  -  X
) ) ) )  =  ( F `  x ) )
9811adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  M  e.  NN )
9913adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  Q  e.  ( P `  M ) )
10015adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  F : RR --> CC )
10117adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR )  ->  ( F `  ( x  +  T ) )  =  ( F `  x
) )
10219adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0..^ N ) )  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
10357adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  ( A  -  X )  e.  RR )
10457rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  X
)  e.  RR* )
105 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
106105a1i 11 . . . . . . . . . 10  |-  ( ph  -> +oo  e.  RR* )
10759ltpnfd 11955 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  X
)  < +oo )
108104, 106, 59, 80, 107eliood 39720 . . . . . . . . 9  |-  ( ph  ->  ( B  -  X
)  e.  ( ( A  -  X ) (,) +oo ) )
109108adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  ( B  -  X )  e.  ( ( A  -  X
) (,) +oo )
)
110 oveq1 6657 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  +  ( k  x.  T ) )  =  ( y  +  ( k  x.  T
) ) )
111110eleq1d 2686 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  +  ( k  x.  T ) )  e.  ran  Q  <->  ( y  +  ( k  x.  T ) )  e.  ran  Q ) )
112111rexbidv 3052 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( E. k  e.  ZZ  ( x  +  (
k  x.  T ) )  e.  ran  Q  <->  E. k  e.  ZZ  (
y  +  ( k  x.  T ) )  e.  ran  Q ) )
113112cbvrabv 3199 . . . . . . . . . 10  |-  { x  e.  ( ( A  -  X ) [,] ( B  -  X )
)  |  E. k  e.  ZZ  ( x  +  ( k  x.  T
) )  e.  ran  Q }  =  { y  e.  ( ( A  -  X ) [,] ( B  -  X
) )  |  E. k  e.  ZZ  (
y  +  ( k  x.  T ) )  e.  ran  Q }
114113uneq2i 3764 . . . . . . . . 9  |-  ( { ( A  -  X
) ,  ( B  -  X ) }  u.  { x  e.  ( ( A  -  X ) [,] ( B  -  X )
)  |  E. k  e.  ZZ  ( x  +  ( k  x.  T
) )  e.  ran  Q } )  =  ( { ( A  -  X ) ,  ( B  -  X ) }  u.  { y  e.  ( ( A  -  X ) [,] ( B  -  X
) )  |  E. k  e.  ZZ  (
y  +  ( k  x.  T ) )  e.  ran  Q }
)
11581, 114eqtri 2644 . . . . . . . 8  |-  H  =  ( { ( A  -  X ) ,  ( B  -  X
) }  u.  {
y  e.  ( ( A  -  X ) [,] ( B  -  X ) )  |  E. k  e.  ZZ  ( y  +  ( k  x.  T ) )  e.  ran  Q } )
116 fourierdlem109.17 . . . . . . . 8  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
117 fourierdlem109.18 . . . . . . . 8  |-  J  =  ( y  e.  ( A (,] B ) 
|->  if ( y  =  B ,  A , 
y ) )
118 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  j  e.  ( 0..^ N ) )
119 eqid 2622 . . . . . . . 8  |-  ( ( S `  ( j  +  1 ) )  -  ( E `  ( S `  ( j  +  1 ) ) ) )  =  ( ( S `  (
j  +  1 ) )  -  ( E `
 ( S `  ( j  +  1 ) ) ) )
120 eqid 2622 . . . . . . . 8  |-  ( F  |`  ( ( J `  ( E `  ( S `
 j ) ) ) (,) ( E `
 ( S `  ( j  +  1 ) ) ) ) )  =  ( F  |`  ( ( J `  ( E `  ( S `
 j ) ) ) (,) ( E `
 ( S `  ( j  +  1 ) ) ) ) )
121 eqid 2622 . . . . . . . 8  |-  ( y  e.  ( ( ( J `  ( E `
 ( S `  j ) ) )  +  ( ( S `
 ( j  +  1 ) )  -  ( E `  ( S `
 ( j  +  1 ) ) ) ) ) (,) (
( E `  ( S `  ( j  +  1 ) ) )  +  ( ( S `  ( j  +  1 ) )  -  ( E `  ( S `  ( j  +  1 ) ) ) ) ) ) 
|->  ( ( F  |`  ( ( J `  ( E `  ( S `
 j ) ) ) (,) ( E `
 ( S `  ( j  +  1 ) ) ) ) ) `  ( y  -  ( ( S `
 ( j  +  1 ) )  -  ( E `  ( S `
 ( j  +  1 ) ) ) ) ) ) )  =  ( y  e.  ( ( ( J `
 ( E `  ( S `  j ) ) )  +  ( ( S `  (
j  +  1 ) )  -  ( E `
 ( S `  ( j  +  1 ) ) ) ) ) (,) ( ( E `  ( S `
 ( j  +  1 ) ) )  +  ( ( S `
 ( j  +  1 ) )  -  ( E `  ( S `
 ( j  +  1 ) ) ) ) ) )  |->  ( ( F  |`  (
( J `  ( E `  ( S `  j ) ) ) (,) ( E `  ( S `  ( j  +  1 ) ) ) ) ) `  ( y  -  (
( S `  (
j  +  1 ) )  -  ( E `
 ( S `  ( j  +  1 ) ) ) ) ) ) )
122 fourierdlem109.19 . . . . . . . . 9  |-  I  =  ( x  e.  RR  |->  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j )  <_  ( J `  ( E `  x ) ) } ,  RR ,  <  ) )
123 fveq2 6191 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  ( Q `  j )  =  ( Q `  i ) )
124123breq1d 4663 . . . . . . . . . . . 12  |-  ( j  =  i  ->  (
( Q `  j
)  <_  ( J `  ( E `  x
) )  <->  ( Q `  i )  <_  ( J `  ( E `  x ) ) ) )
125124cbvrabv 3199 . . . . . . . . . . 11  |-  { j  e.  ( 0..^ M )  |  ( Q `
 j )  <_ 
( J `  ( E `  x )
) }  =  {
i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( J `  ( E `  x ) ) }
126125supeq1i 8353 . . . . . . . . . 10  |-  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j
)  <_  ( J `  ( E `  x
) ) } ,  RR ,  <  )  =  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( J `  ( E `  x )
) } ,  RR ,  <  )
127126mpteq2i 4741 . . . . . . . . 9  |-  ( x  e.  RR  |->  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j
)  <_  ( J `  ( E `  x
) ) } ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( J `  ( E `  x )
) } ,  RR ,  <  ) )
128122, 127eqtri 2644 . . . . . . . 8  |-  I  =  ( x  e.  RR  |->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( J `  ( E `  x ) ) } ,  RR ,  <  ) )
12910, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128fourierdlem90 40413 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  ( F  |`  ( ( S `  j ) (,) ( S `  ( j  +  1 ) ) ) )  e.  ( ( ( S `  j ) (,) ( S `  ( j  +  1 ) ) ) -cn-> CC ) )
130129adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  X  <  0 )  /\  j  e.  ( 0..^ N ) )  ->  ( F  |`  ( ( S `  j ) (,) ( S `  ( j  +  1 ) ) ) )  e.  ( ( ( S `  j ) (,) ( S `  ( j  +  1 ) ) ) -cn-> CC ) )
13121adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0..^ N ) )  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
) )
132 eqid 2622 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  |->  R )  =  ( i  e.  ( 0..^ M )  |->  R )
13310, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132fourierdlem89 40412 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  if ( ( J `  ( E `
 ( S `  j ) ) )  =  ( Q `  ( I `  ( S `  j )
) ) ,  ( ( i  e.  ( 0..^ M )  |->  R ) `  ( I `
 ( S `  j ) ) ) ,  ( F `  ( J `  ( E `
 ( S `  j ) ) ) ) )  e.  ( ( F  |`  (
( S `  j
) (,) ( S `
 ( j  +  1 ) ) ) ) lim CC  ( S `
 j ) ) )
134133adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  X  <  0 )  /\  j  e.  ( 0..^ N ) )  ->  if (
( J `  ( E `  ( S `  j ) ) )  =  ( Q `  ( I `  ( S `  j )
) ) ,  ( ( i  e.  ( 0..^ M )  |->  R ) `  ( I `
 ( S `  j ) ) ) ,  ( F `  ( J `  ( E `
 ( S `  j ) ) ) ) )  e.  ( ( F  |`  (
( S `  j
) (,) ( S `
 ( j  +  1 ) ) ) ) lim CC  ( S `
 j ) ) )
13523adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0..^ N ) )  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) ) )
136 eqid 2622 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  |->  L )  =  ( i  e.  ( 0..^ M )  |->  L )
13710, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136fourierdlem91 40414 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0..^ N ) )  ->  if ( ( E `  ( S `
 ( j  +  1 ) ) )  =  ( Q `  ( ( I `  ( S `  j ) )  +  1 ) ) ,  ( ( i  e.  ( 0..^ M )  |->  L ) `
 ( I `  ( S `  j ) ) ) ,  ( F `  ( E `
 ( S `  ( j  +  1 ) ) ) ) )  e.  ( ( F  |`  ( ( S `  j ) (,) ( S `  (
j  +  1 ) ) ) ) lim CC  ( S `  ( j  +  1 ) ) ) )
138137adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  X  <  0 )  /\  j  e.  ( 0..^ N ) )  ->  if (
( E `  ( S `  ( j  +  1 ) ) )  =  ( Q `
 ( ( I `
 ( S `  j ) )  +  1 ) ) ,  ( ( i  e.  ( 0..^ M ) 
|->  L ) `  (
I `  ( S `  j ) ) ) ,  ( F `  ( E `  ( S `
 ( j  +  1 ) ) ) ) )  e.  ( ( F  |`  (
( S `  j
) (,) ( S `
 ( j  +  1 ) ) ) ) lim CC  ( S `
 ( j  +  1 ) ) ) )
13958, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138fourierdlem108 40431 . . . . 5  |-  ( (
ph  /\  X  <  0 )  ->  S. ( ( ( A  -  X )  -  -u X ) [,] (
( B  -  X
)  -  -u X
) ) ( F `
 x )  _d x  =  S. ( ( A  -  X
) [,] ( B  -  X ) ) ( F `  x
)  _d x )
14056, 139eqtr2d 2657 . . . 4  |-  ( (
ph  /\  X  <  0 )  ->  S. ( ( A  -  X ) [,] ( B  -  X )
) ( F `  x )  _d x  =  S. ( A [,] B ) ( F `  x )  _d x )
14137, 43, 140syl2anc 693 . . 3  |-  ( ( ( ph  /\  -.  0  <  X )  /\  -.  X  =  0
)  ->  S. (
( A  -  X
) [,] ( B  -  X ) ) ( F `  x
)  _d x  =  S. ( A [,] B ) ( F `
 x )  _d x )
14236, 141pm2.61dan 832 . 2  |-  ( (
ph  /\  -.  0  <  X )  ->  S. ( ( A  -  X ) [,] ( B  -  X )
) ( F `  x )  _d x  =  S. ( A [,] B ) ( F `  x )  _d x )
14325, 142pm2.61dan 832 1  |-  ( ph  ->  S. ( ( A  -  X ) [,] ( B  -  X
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    u. cun 3572   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   iotacio 5849   -->wf 5884   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ^m cmap 7857   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   ZZcz 11377   (,)cioo 12175   (,]cioc 12176   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   |_cfl 12591   #chash 13117   -cn->ccncf 22679   S.citg 23387   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem110  40433
  Copyright terms: Public domain W3C validator