| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipcnlem2 | Structured version Visualization version Unicode version | ||
| Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipcn.v |
|
| ipcn.h |
|
| ipcn.d |
|
| ipcn.n |
|
| ipcn.t |
|
| ipcn.u |
|
| ipcn.w |
|
| ipcn.a |
|
| ipcn.b |
|
| ipcn.r |
|
| ipcn.x |
|
| ipcn.y |
|
| ipcn.1 |
|
| ipcn.2 |
|
| Ref | Expression |
|---|---|
| ipcnlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcn.w |
. . 3
| |
| 2 | ipcn.a |
. . 3
| |
| 3 | ipcn.b |
. . 3
| |
| 4 | ipcn.v |
. . . 4
| |
| 5 | ipcn.h |
. . . 4
| |
| 6 | 4, 5 | cphipcl 22991 |
. . 3
|
| 7 | 1, 2, 3, 6 | syl3anc 1326 |
. 2
|
| 8 | ipcn.x |
. . 3
| |
| 9 | ipcn.y |
. . 3
| |
| 10 | 4, 5 | cphipcl 22991 |
. . 3
|
| 11 | 1, 8, 9, 10 | syl3anc 1326 |
. 2
|
| 12 | 4, 5 | cphipcl 22991 |
. . 3
|
| 13 | 1, 2, 9, 12 | syl3anc 1326 |
. 2
|
| 14 | ipcn.r |
. . 3
| |
| 15 | 14 | rpred 11872 |
. 2
|
| 16 | 7, 13 | subcld 10392 |
. . . 4
|
| 17 | 16 | abscld 14175 |
. . 3
|
| 18 | cphnlm 22972 |
. . . . . . . . 9
| |
| 19 | 1, 18 | syl 17 |
. . . . . . . 8
|
| 20 | nlmngp 22481 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
|
| 22 | ipcn.n |
. . . . . . . 8
| |
| 23 | 4, 22 | nmcl 22420 |
. . . . . . 7
|
| 24 | 21, 2, 23 | syl2anc 693 |
. . . . . 6
|
| 25 | 4, 22 | nmge0 22421 |
. . . . . . 7
|
| 26 | 21, 2, 25 | syl2anc 693 |
. . . . . 6
|
| 27 | 24, 26 | ge0p1rpd 11902 |
. . . . 5
|
| 28 | 27 | rpred 11872 |
. . . 4
|
| 29 | ngpms 22404 |
. . . . . 6
| |
| 30 | 21, 29 | syl 17 |
. . . . 5
|
| 31 | ipcn.d |
. . . . . 6
| |
| 32 | 4, 31 | mscl 22266 |
. . . . 5
|
| 33 | 30, 3, 9, 32 | syl3anc 1326 |
. . . 4
|
| 34 | 28, 33 | remulcld 10070 |
. . 3
|
| 35 | 15 | rehalfcld 11279 |
. . 3
|
| 36 | 24, 33 | remulcld 10070 |
. . . 4
|
| 37 | eqid 2622 |
. . . . . . . 8
| |
| 38 | 5, 4, 37 | cphsubdi 23009 |
. . . . . . 7
|
| 39 | 1, 2, 3, 9, 38 | syl13anc 1328 |
. . . . . 6
|
| 40 | 39 | fveq2d 6195 |
. . . . 5
|
| 41 | ngpgrp 22403 |
. . . . . . . . 9
| |
| 42 | 21, 41 | syl 17 |
. . . . . . . 8
|
| 43 | 4, 37 | grpsubcl 17495 |
. . . . . . . 8
|
| 44 | 42, 3, 9, 43 | syl3anc 1326 |
. . . . . . 7
|
| 45 | 4, 5, 22 | ipcau 23037 |
. . . . . . 7
|
| 46 | 1, 2, 44, 45 | syl3anc 1326 |
. . . . . 6
|
| 47 | 22, 4, 37, 31 | ngpds 22408 |
. . . . . . . 8
|
| 48 | 21, 3, 9, 47 | syl3anc 1326 |
. . . . . . 7
|
| 49 | 48 | oveq2d 6666 |
. . . . . 6
|
| 50 | 46, 49 | breqtrrd 4681 |
. . . . 5
|
| 51 | 40, 50 | eqbrtrrd 4677 |
. . . 4
|
| 52 | msxms 22259 |
. . . . . . 7
| |
| 53 | 30, 52 | syl 17 |
. . . . . 6
|
| 54 | 4, 31 | xmsge0 22268 |
. . . . . 6
|
| 55 | 53, 3, 9, 54 | syl3anc 1326 |
. . . . 5
|
| 56 | 24 | lep1d 10955 |
. . . . 5
|
| 57 | 24, 28, 33, 55, 56 | lemul1ad 10963 |
. . . 4
|
| 58 | 17, 36, 34, 51, 57 | letrd 10194 |
. . 3
|
| 59 | ipcn.2 |
. . . . 5
| |
| 60 | ipcn.t |
. . . . 5
| |
| 61 | 59, 60 | syl6breq 4694 |
. . . 4
|
| 62 | 33, 35, 27 | ltmuldiv2d 11920 |
. . . 4
|
| 63 | 61, 62 | mpbird 247 |
. . 3
|
| 64 | 17, 34, 35, 58, 63 | lelttrd 10195 |
. 2
|
| 65 | 13, 11 | subcld 10392 |
. . . 4
|
| 66 | 65 | abscld 14175 |
. . 3
|
| 67 | 4, 31 | mscl 22266 |
. . . . 5
|
| 68 | 30, 2, 8, 67 | syl3anc 1326 |
. . . 4
|
| 69 | 4, 22 | nmcl 22420 |
. . . . . 6
|
| 70 | 21, 3, 69 | syl2anc 693 |
. . . . 5
|
| 71 | 14 | rphalfcld 11884 |
. . . . . . . 8
|
| 72 | 71, 27 | rpdivcld 11889 |
. . . . . . 7
|
| 73 | 60, 72 | syl5eqel 2705 |
. . . . . 6
|
| 74 | 73 | rpred 11872 |
. . . . 5
|
| 75 | 70, 74 | readdcld 10069 |
. . . 4
|
| 76 | 68, 75 | remulcld 10070 |
. . 3
|
| 77 | 4, 22 | nmcl 22420 |
. . . . . 6
|
| 78 | 21, 9, 77 | syl2anc 693 |
. . . . 5
|
| 79 | 68, 78 | remulcld 10070 |
. . . 4
|
| 80 | 5, 4, 37 | cphsubdir 23008 |
. . . . . . 7
|
| 81 | 1, 2, 8, 9, 80 | syl13anc 1328 |
. . . . . 6
|
| 82 | 81 | fveq2d 6195 |
. . . . 5
|
| 83 | 4, 37 | grpsubcl 17495 |
. . . . . . . 8
|
| 84 | 42, 2, 8, 83 | syl3anc 1326 |
. . . . . . 7
|
| 85 | 4, 5, 22 | ipcau 23037 |
. . . . . . 7
|
| 86 | 1, 84, 9, 85 | syl3anc 1326 |
. . . . . 6
|
| 87 | 22, 4, 37, 31 | ngpds 22408 |
. . . . . . . 8
|
| 88 | 21, 2, 8, 87 | syl3anc 1326 |
. . . . . . 7
|
| 89 | 88 | oveq1d 6665 |
. . . . . 6
|
| 90 | 86, 89 | breqtrrd 4681 |
. . . . 5
|
| 91 | 82, 90 | eqbrtrrd 4677 |
. . . 4
|
| 92 | 4, 31 | xmsge0 22268 |
. . . . . 6
|
| 93 | 53, 2, 8, 92 | syl3anc 1326 |
. . . . 5
|
| 94 | 78, 70 | resubcld 10458 |
. . . . . . 7
|
| 95 | 4, 22, 37 | nm2dif 22429 |
. . . . . . . . 9
|
| 96 | 21, 9, 3, 95 | syl3anc 1326 |
. . . . . . . 8
|
| 97 | 22, 4, 37, 31 | ngpdsr 22409 |
. . . . . . . . 9
|
| 98 | 21, 3, 9, 97 | syl3anc 1326 |
. . . . . . . 8
|
| 99 | 96, 98 | breqtrrd 4681 |
. . . . . . 7
|
| 100 | 33, 74, 59 | ltled 10185 |
. . . . . . 7
|
| 101 | 94, 33, 74, 99, 100 | letrd 10194 |
. . . . . 6
|
| 102 | 78, 70, 74 | lesubadd2d 10626 |
. . . . . 6
|
| 103 | 101, 102 | mpbid 222 |
. . . . 5
|
| 104 | 78, 75, 68, 93, 103 | lemul2ad 10964 |
. . . 4
|
| 105 | 66, 79, 76, 91, 104 | letrd 10194 |
. . 3
|
| 106 | ipcn.1 |
. . . . 5
| |
| 107 | ipcn.u |
. . . . 5
| |
| 108 | 106, 107 | syl6breq 4694 |
. . . 4
|
| 109 | 0red 10041 |
. . . . . 6
| |
| 110 | 4, 22 | nmge0 22421 |
. . . . . . 7
|
| 111 | 21, 3, 110 | syl2anc 693 |
. . . . . 6
|
| 112 | 70, 73 | ltaddrpd 11905 |
. . . . . 6
|
| 113 | 109, 70, 75, 111, 112 | lelttrd 10195 |
. . . . 5
|
| 114 | ltmuldiv 10896 |
. . . . 5
| |
| 115 | 68, 35, 75, 113, 114 | syl112anc 1330 |
. . . 4
|
| 116 | 108, 115 | mpbird 247 |
. . 3
|
| 117 | 66, 76, 35, 105, 116 | lelttrd 10195 |
. 2
|
| 118 | 7, 11, 13, 15, 64, 117 | abs3lemd 14200 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-topgen 16104 df-xrs 16162 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-staf 18845 df-srng 18846 df-lmod 18865 df-lmhm 19022 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-phl 19971 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-tng 22389 df-nlm 22391 df-clm 22863 df-cph 22968 df-tch 22969 |
| This theorem is referenced by: ipcnlem1 23044 |
| Copyright terms: Public domain | W3C validator |