MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   Unicode version

Theorem ipcnlem2 23043
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v  |-  V  =  ( Base `  W
)
ipcn.h  |-  .,  =  ( .i `  W )
ipcn.d  |-  D  =  ( dist `  W
)
ipcn.n  |-  N  =  ( norm `  W
)
ipcn.t  |-  T  =  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )
ipcn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  B
)  +  T ) )
ipcn.w  |-  ( ph  ->  W  e.  CPreHil )
ipcn.a  |-  ( ph  ->  A  e.  V )
ipcn.b  |-  ( ph  ->  B  e.  V )
ipcn.r  |-  ( ph  ->  R  e.  RR+ )
ipcn.x  |-  ( ph  ->  X  e.  V )
ipcn.y  |-  ( ph  ->  Y  e.  V )
ipcn.1  |-  ( ph  ->  ( A D X )  <  U )
ipcn.2  |-  ( ph  ->  ( B D Y )  <  T )
Assertion
Ref Expression
ipcnlem2  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( X 
.,  Y ) ) )  <  R )

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3  |-  ( ph  ->  W  e.  CPreHil )
2 ipcn.a . . 3  |-  ( ph  ->  A  e.  V )
3 ipcn.b . . 3  |-  ( ph  ->  B  e.  V )
4 ipcn.v . . . 4  |-  V  =  ( Base `  W
)
5 ipcn.h . . . 4  |-  .,  =  ( .i `  W )
64, 5cphipcl 22991 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  CC )
71, 2, 3, 6syl3anc 1326 . 2  |-  ( ph  ->  ( A  .,  B
)  e.  CC )
8 ipcn.x . . 3  |-  ( ph  ->  X  e.  V )
9 ipcn.y . . 3  |-  ( ph  ->  Y  e.  V )
104, 5cphipcl 22991 . . 3  |-  ( ( W  e.  CPreHil  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .,  Y )  e.  CC )
111, 8, 9, 10syl3anc 1326 . 2  |-  ( ph  ->  ( X  .,  Y
)  e.  CC )
124, 5cphipcl 22991 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  Y  e.  V )  ->  ( A  .,  Y )  e.  CC )
131, 2, 9, 12syl3anc 1326 . 2  |-  ( ph  ->  ( A  .,  Y
)  e.  CC )
14 ipcn.r . . 3  |-  ( ph  ->  R  e.  RR+ )
1514rpred 11872 . 2  |-  ( ph  ->  R  e.  RR )
167, 13subcld 10392 . . . 4  |-  ( ph  ->  ( ( A  .,  B )  -  ( A  .,  Y ) )  e.  CC )
1716abscld 14175 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  e.  RR )
18 cphnlm 22972 . . . . . . . . 9  |-  ( W  e.  CPreHil  ->  W  e. NrmMod )
191, 18syl 17 . . . . . . . 8  |-  ( ph  ->  W  e. NrmMod )
20 nlmngp 22481 . . . . . . . 8  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
2119, 20syl 17 . . . . . . 7  |-  ( ph  ->  W  e. NrmGrp )
22 ipcn.n . . . . . . . 8  |-  N  =  ( norm `  W
)
234, 22nmcl 22420 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  ( N `  A )  e.  RR )
2421, 2, 23syl2anc 693 . . . . . 6  |-  ( ph  ->  ( N `  A
)  e.  RR )
254, 22nmge0 22421 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  0  <_  ( N `  A
) )
2621, 2, 25syl2anc 693 . . . . . 6  |-  ( ph  ->  0  <_  ( N `  A ) )
2724, 26ge0p1rpd 11902 . . . . 5  |-  ( ph  ->  ( ( N `  A )  +  1 )  e.  RR+ )
2827rpred 11872 . . . 4  |-  ( ph  ->  ( ( N `  A )  +  1 )  e.  RR )
29 ngpms 22404 . . . . . 6  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
3021, 29syl 17 . . . . 5  |-  ( ph  ->  W  e.  MetSp )
31 ipcn.d . . . . . 6  |-  D  =  ( dist `  W
)
324, 31mscl 22266 . . . . 5  |-  ( ( W  e.  MetSp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  e.  RR )
3330, 3, 9, 32syl3anc 1326 . . . 4  |-  ( ph  ->  ( B D Y )  e.  RR )
3428, 33remulcld 10070 . . 3  |-  ( ph  ->  ( ( ( N `
 A )  +  1 )  x.  ( B D Y ) )  e.  RR )
3515rehalfcld 11279 . . 3  |-  ( ph  ->  ( R  /  2
)  e.  RR )
3624, 33remulcld 10070 . . . 4  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  e.  RR )
37 eqid 2622 . . . . . . . 8  |-  ( -g `  W )  =  (
-g `  W )
385, 4, 37cphsubdi 23009 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  Y  e.  V )
)  ->  ( A  .,  ( B ( -g `  W ) Y ) )  =  ( ( A  .,  B )  -  ( A  .,  Y ) ) )
391, 2, 3, 9, 38syl13anc 1328 . . . . . 6  |-  ( ph  ->  ( A  .,  ( B ( -g `  W
) Y ) )  =  ( ( A 
.,  B )  -  ( A  .,  Y ) ) )
4039fveq2d 6195 . . . . 5  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  =  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) ) )
41 ngpgrp 22403 . . . . . . . . 9  |-  ( W  e. NrmGrp  ->  W  e.  Grp )
4221, 41syl 17 . . . . . . . 8  |-  ( ph  ->  W  e.  Grp )
434, 37grpsubcl 17495 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B ( -g `  W ) Y )  e.  V )
4442, 3, 9, 43syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( B ( -g `  W ) Y )  e.  V )
454, 5, 22ipcau 23037 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( B ( -g `  W
) Y )  e.  V )  ->  ( abs `  ( A  .,  ( B ( -g `  W
) Y ) ) )  <_  ( ( N `  A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
461, 2, 44, 45syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  <_  ( ( N `
 A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
4722, 4, 37, 31ngpds 22408 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  =  ( N `  ( B ( -g `  W
) Y ) ) )
4821, 3, 9, 47syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( B D Y )  =  ( N `
 ( B (
-g `  W ) Y ) ) )
4948oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  =  ( ( N `
 A )  x.  ( N `  ( B ( -g `  W
) Y ) ) ) )
5046, 49breqtrrd 4681 . . . . 5  |-  ( ph  ->  ( abs `  ( A  .,  ( B (
-g `  W ) Y ) ) )  <_  ( ( N `
 A )  x.  ( B D Y ) ) )
5140, 50eqbrtrrd 4677 . . . 4  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <_  ( ( N `  A )  x.  ( B D Y ) ) )
52 msxms 22259 . . . . . . 7  |-  ( W  e.  MetSp  ->  W  e.  *MetSp )
5330, 52syl 17 . . . . . 6  |-  ( ph  ->  W  e.  *MetSp )
544, 31xmsge0 22268 . . . . . 6  |-  ( ( W  e.  *MetSp  /\  B  e.  V  /\  Y  e.  V )  ->  0  <_  ( B D Y ) )
5553, 3, 9, 54syl3anc 1326 . . . . 5  |-  ( ph  ->  0  <_  ( B D Y ) )
5624lep1d 10955 . . . . 5  |-  ( ph  ->  ( N `  A
)  <_  ( ( N `  A )  +  1 ) )
5724, 28, 33, 55, 56lemul1ad 10963 . . . 4  |-  ( ph  ->  ( ( N `  A )  x.  ( B D Y ) )  <_  ( ( ( N `  A )  +  1 )  x.  ( B D Y ) ) )
5817, 36, 34, 51, 57letrd 10194 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <_  ( (
( N `  A
)  +  1 )  x.  ( B D Y ) ) )
59 ipcn.2 . . . . 5  |-  ( ph  ->  ( B D Y )  <  T )
60 ipcn.t . . . . 5  |-  T  =  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )
6159, 60syl6breq 4694 . . . 4  |-  ( ph  ->  ( B D Y )  <  ( ( R  /  2 )  /  ( ( N `
 A )  +  1 ) ) )
6233, 35, 27ltmuldiv2d 11920 . . . 4  |-  ( ph  ->  ( ( ( ( N `  A )  +  1 )  x.  ( B D Y ) )  <  ( R  /  2 )  <->  ( B D Y )  <  (
( R  /  2
)  /  ( ( N `  A )  +  1 ) ) ) )
6361, 62mpbird 247 . . 3  |-  ( ph  ->  ( ( ( N `
 A )  +  1 )  x.  ( B D Y ) )  <  ( R  / 
2 ) )
6417, 34, 35, 58, 63lelttrd 10195 . 2  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( A 
.,  Y ) ) )  <  ( R  /  2 ) )
6513, 11subcld 10392 . . . 4  |-  ( ph  ->  ( ( A  .,  Y )  -  ( X  .,  Y ) )  e.  CC )
6665abscld 14175 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  e.  RR )
674, 31mscl 22266 . . . . 5  |-  ( ( W  e.  MetSp  /\  A  e.  V  /\  X  e.  V )  ->  ( A D X )  e.  RR )
6830, 2, 8, 67syl3anc 1326 . . . 4  |-  ( ph  ->  ( A D X )  e.  RR )
694, 22nmcl 22420 . . . . . 6  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  ( N `  B )  e.  RR )
7021, 3, 69syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  B
)  e.  RR )
7114rphalfcld 11884 . . . . . . . 8  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
7271, 27rpdivcld 11889 . . . . . . 7  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( N `  A
)  +  1 ) )  e.  RR+ )
7360, 72syl5eqel 2705 . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
7473rpred 11872 . . . . 5  |-  ( ph  ->  T  e.  RR )
7570, 74readdcld 10069 . . . 4  |-  ( ph  ->  ( ( N `  B )  +  T
)  e.  RR )
7668, 75remulcld 10070 . . 3  |-  ( ph  ->  ( ( A D X )  x.  (
( N `  B
)  +  T ) )  e.  RR )
774, 22nmcl 22420 . . . . . 6  |-  ( ( W  e. NrmGrp  /\  Y  e.  V )  ->  ( N `  Y )  e.  RR )
7821, 9, 77syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  Y
)  e.  RR )
7968, 78remulcld 10070 . . . 4  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  e.  RR )
805, 4, 37cphsubdir 23008 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A ( -g `  W
) X )  .,  Y )  =  ( ( A  .,  Y
)  -  ( X 
.,  Y ) ) )
811, 2, 8, 9, 80syl13anc 1328 . . . . . 6  |-  ( ph  ->  ( ( A (
-g `  W ) X )  .,  Y
)  =  ( ( A  .,  Y )  -  ( X  .,  Y ) ) )
8281fveq2d 6195 . . . . 5  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  =  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) ) )
834, 37grpsubcl 17495 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  A  e.  V  /\  X  e.  V )  ->  ( A ( -g `  W ) X )  e.  V )
8442, 2, 8, 83syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( A ( -g `  W ) X )  e.  V )
854, 5, 22ipcau 23037 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  ( A ( -g `  W
) X )  e.  V  /\  Y  e.  V )  ->  ( abs `  ( ( A ( -g `  W
) X )  .,  Y ) )  <_ 
( ( N `  ( A ( -g `  W
) X ) )  x.  ( N `  Y ) ) )
861, 84, 9, 85syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  <_  ( ( N `
 ( A (
-g `  W ) X ) )  x.  ( N `  Y
) ) )
8722, 4, 37, 31ngpds 22408 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  A  e.  V  /\  X  e.  V )  ->  ( A D X )  =  ( N `  ( A ( -g `  W
) X ) ) )
8821, 2, 8, 87syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( A D X )  =  ( N `
 ( A (
-g `  W ) X ) ) )
8988oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  =  ( ( N `  ( A ( -g `  W
) X ) )  x.  ( N `  Y ) ) )
9086, 89breqtrrd 4681 . . . . 5  |-  ( ph  ->  ( abs `  (
( A ( -g `  W ) X ) 
.,  Y ) )  <_  ( ( A D X )  x.  ( N `  Y
) ) )
9182, 90eqbrtrrd 4677 . . . 4  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <_  ( ( A D X )  x.  ( N `  Y
) ) )
924, 31xmsge0 22268 . . . . . 6  |-  ( ( W  e.  *MetSp  /\  A  e.  V  /\  X  e.  V )  ->  0  <_  ( A D X ) )
9353, 2, 8, 92syl3anc 1326 . . . . 5  |-  ( ph  ->  0  <_  ( A D X ) )
9478, 70resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  e.  RR )
954, 22, 37nm2dif 22429 . . . . . . . . 9  |-  ( ( W  e. NrmGrp  /\  Y  e.  V  /\  B  e.  V )  ->  (
( N `  Y
)  -  ( N `
 B ) )  <_  ( N `  ( Y ( -g `  W
) B ) ) )
9621, 9, 3, 95syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  ( N `  ( Y ( -g `  W ) B ) ) )
9722, 4, 37, 31ngpdsr 22409 . . . . . . . . 9  |-  ( ( W  e. NrmGrp  /\  B  e.  V  /\  Y  e.  V )  ->  ( B D Y )  =  ( N `  ( Y ( -g `  W
) B ) ) )
9821, 3, 9, 97syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( B D Y )  =  ( N `
 ( Y (
-g `  W ) B ) ) )
9996, 98breqtrrd 4681 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  ( B D Y ) )
10033, 74, 59ltled 10185 . . . . . . 7  |-  ( ph  ->  ( B D Y )  <_  T )
10194, 33, 74, 99, 100letrd 10194 . . . . . 6  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  B )
)  <_  T )
10278, 70, 74lesubadd2d 10626 . . . . . 6  |-  ( ph  ->  ( ( ( N `
 Y )  -  ( N `  B ) )  <_  T  <->  ( N `  Y )  <_  (
( N `  B
)  +  T ) ) )
103101, 102mpbid 222 . . . . 5  |-  ( ph  ->  ( N `  Y
)  <_  ( ( N `  B )  +  T ) )
10478, 75, 68, 93, 103lemul2ad 10964 . . . 4  |-  ( ph  ->  ( ( A D X )  x.  ( N `  Y )
)  <_  ( ( A D X )  x.  ( ( N `  B )  +  T
) ) )
10566, 79, 76, 91, 104letrd 10194 . . 3  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <_  ( ( A D X )  x.  ( ( N `  B )  +  T
) ) )
106 ipcn.1 . . . . 5  |-  ( ph  ->  ( A D X )  <  U )
107 ipcn.u . . . . 5  |-  U  =  ( ( R  / 
2 )  /  (
( N `  B
)  +  T ) )
108106, 107syl6breq 4694 . . . 4  |-  ( ph  ->  ( A D X )  <  ( ( R  /  2 )  /  ( ( N `
 B )  +  T ) ) )
109 0red 10041 . . . . . 6  |-  ( ph  ->  0  e.  RR )
1104, 22nmge0 22421 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  0  <_  ( N `  B
) )
11121, 3, 110syl2anc 693 . . . . . 6  |-  ( ph  ->  0  <_  ( N `  B ) )
11270, 73ltaddrpd 11905 . . . . . 6  |-  ( ph  ->  ( N `  B
)  <  ( ( N `  B )  +  T ) )
113109, 70, 75, 111, 112lelttrd 10195 . . . . 5  |-  ( ph  ->  0  <  ( ( N `  B )  +  T ) )
114 ltmuldiv 10896 . . . . 5  |-  ( ( ( A D X )  e.  RR  /\  ( R  /  2
)  e.  RR  /\  ( ( ( N `
 B )  +  T )  e.  RR  /\  0  <  ( ( N `  B )  +  T ) ) )  ->  ( (
( A D X )  x.  ( ( N `  B )  +  T ) )  <  ( R  / 
2 )  <->  ( A D X )  <  (
( R  /  2
)  /  ( ( N `  B )  +  T ) ) ) )
11568, 35, 75, 113, 114syl112anc 1330 . . . 4  |-  ( ph  ->  ( ( ( A D X )  x.  ( ( N `  B )  +  T
) )  <  ( R  /  2 )  <->  ( A D X )  <  (
( R  /  2
)  /  ( ( N `  B )  +  T ) ) ) )
116108, 115mpbird 247 . . 3  |-  ( ph  ->  ( ( A D X )  x.  (
( N `  B
)  +  T ) )  <  ( R  /  2 ) )
11766, 76, 35, 105, 116lelttrd 10195 . 2  |-  ( ph  ->  ( abs `  (
( A  .,  Y
)  -  ( X 
.,  Y ) ) )  <  ( R  /  2 ) )
1187, 11, 13, 15, 64, 117abs3lemd 14200 1  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  -  ( X 
.,  Y ) ) )  <  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   abscabs 13974   Basecbs 15857   .icip 15946   distcds 15950   Grpcgrp 17422   -gcsg 17424   *MetSpcxme 22122   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385   CPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-phl 19971  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969
This theorem is referenced by:  ipcnlem1  23044
  Copyright terms: Public domain W3C validator