| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnmblALT | Structured version Visualization version Unicode version | ||
| Description: All open sets are measurable. This alternative proof of opnmbl 23370 is significantly shorter, at the expense of invoking countable choice ax-cc 9257. (This was also the original proof before the current opnmbl 23370 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| opnmblALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopbas 22563 |
. . . 4
| |
| 2 | eltg3 20766 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | uniiun 4573 |
. . . . . . 7
| |
| 5 | ssdomg 8001 |
. . . . . . . . . 10
| |
| 6 | 1, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | omelon 8543 |
. . . . . . . . . . . 12
| |
| 8 | qnnen 14942 |
. . . . . . . . . . . . . . 15
| |
| 9 | xpen 8123 |
. . . . . . . . . . . . . . 15
| |
| 10 | 8, 8, 9 | mp2an 708 |
. . . . . . . . . . . . . 14
|
| 11 | xpnnen 14939 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | entri 8010 |
. . . . . . . . . . . . 13
|
| 13 | nnenom 12779 |
. . . . . . . . . . . . 13
| |
| 14 | 12, 13 | entr2i 8011 |
. . . . . . . . . . . 12
|
| 15 | isnumi 8772 |
. . . . . . . . . . . 12
| |
| 16 | 7, 14, 15 | mp2an 708 |
. . . . . . . . . . 11
|
| 17 | ioof 12271 |
. . . . . . . . . . . . 13
| |
| 18 | ffun 6048 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 20 | qssre 11798 |
. . . . . . . . . . . . . . 15
| |
| 21 | ressxr 10083 |
. . . . . . . . . . . . . . 15
| |
| 22 | 20, 21 | sstri 3612 |
. . . . . . . . . . . . . 14
|
| 23 | xpss12 5225 |
. . . . . . . . . . . . . 14
| |
| 24 | 22, 22, 23 | mp2an 708 |
. . . . . . . . . . . . 13
|
| 25 | 17 | fdmi 6052 |
. . . . . . . . . . . . 13
|
| 26 | 24, 25 | sseqtr4i 3638 |
. . . . . . . . . . . 12
|
| 27 | fores 6124 |
. . . . . . . . . . . 12
| |
| 28 | 19, 26, 27 | mp2an 708 |
. . . . . . . . . . 11
|
| 29 | fodomnum 8880 |
. . . . . . . . . . 11
| |
| 30 | 16, 28, 29 | mp2 9 |
. . . . . . . . . 10
|
| 31 | domentr 8015 |
. . . . . . . . . 10
| |
| 32 | 30, 12, 31 | mp2an 708 |
. . . . . . . . 9
|
| 33 | domtr 8009 |
. . . . . . . . 9
| |
| 34 | 6, 32, 33 | sylancl 694 |
. . . . . . . 8
|
| 35 | imassrn 5477 |
. . . . . . . . . . 11
| |
| 36 | ffn 6045 |
. . . . . . . . . . . . . 14
| |
| 37 | 17, 36 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 38 | ioombl 23333 |
. . . . . . . . . . . . . 14
| |
| 39 | 38 | rgen2w 2925 |
. . . . . . . . . . . . 13
|
| 40 | ffnov 6764 |
. . . . . . . . . . . . 13
| |
| 41 | 37, 39, 40 | mpbir2an 955 |
. . . . . . . . . . . 12
|
| 42 | frn 6053 |
. . . . . . . . . . . 12
| |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . 11
|
| 44 | 35, 43 | sstri 3612 |
. . . . . . . . . 10
|
| 45 | sstr 3611 |
. . . . . . . . . 10
| |
| 46 | 44, 45 | mpan2 707 |
. . . . . . . . 9
|
| 47 | dfss3 3592 |
. . . . . . . . 9
| |
| 48 | 46, 47 | sylib 208 |
. . . . . . . 8
|
| 49 | iunmbl2 23325 |
. . . . . . . 8
| |
| 50 | 34, 48, 49 | syl2anc 693 |
. . . . . . 7
|
| 51 | 4, 50 | syl5eqel 2705 |
. . . . . 6
|
| 52 | eleq1 2689 |
. . . . . 6
| |
| 53 | 51, 52 | syl5ibrcom 237 |
. . . . 5
|
| 54 | 53 | imp 445 |
. . . 4
|
| 55 | 54 | exlimiv 1858 |
. . 3
|
| 56 | 3, 55 | sylbi 207 |
. 2
|
| 57 | eqid 2622 |
. . 3
| |
| 58 | 57 | tgqioo 22603 |
. 2
|
| 59 | 56, 58 | eleq2s 2719 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-topgen 16104 df-xmet 19739 df-met 19740 df-bases 20750 df-ovol 23233 df-vol 23234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |