MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac Structured version   Visualization version   Unicode version

Theorem pgpfac 18483
Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 18479. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b  |-  B  =  ( Base `  G
)
pgpfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
pgpfac.g  |-  ( ph  ->  G  e.  Abel )
pgpfac.p  |-  ( ph  ->  P pGrp  G )
pgpfac.f  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
pgpfac  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
Distinct variable groups:    C, s    s, r, G    B, s
Allowed substitution hints:    ph( s, r)    B( r)    C( r)    P( s, r)

Proof of Theorem pgpfac
Dummy variables  t  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 18198 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 pgpfac.b . . . 4  |-  B  =  ( Base `  G
)
43subgid 17596 . . 3  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
51, 2, 43syl 18 . 2  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
6 pgpfac.f . . 3  |-  ( ph  ->  B  e.  Fin )
7 eleq1 2689 . . . . . 6  |-  ( t  =  u  ->  (
t  e.  (SubGrp `  G )  <->  u  e.  (SubGrp `  G ) ) )
8 eqeq2 2633 . . . . . . . 8  |-  ( t  =  u  ->  (
( G DProd  s )  =  t  <->  ( G DProd  s
)  =  u ) )
98anbi2d 740 . . . . . . 7  |-  ( t  =  u  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  ( G dom DProd  s  /\  ( G DProd 
s )  =  u ) ) )
109rexbidv 3052 . . . . . 6  |-  ( t  =  u  ->  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  u ) ) )
117, 10imbi12d 334 . . . . 5  |-  ( t  =  u  ->  (
( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) )  <->  ( u  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  u ) ) ) )
1211imbi2d 330 . . . 4  |-  ( t  =  u  ->  (
( ph  ->  ( t  e.  (SubGrp `  G
)  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )  <->  ( ph  ->  ( u  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  u ) ) ) ) )
13 eleq1 2689 . . . . . 6  |-  ( t  =  B  ->  (
t  e.  (SubGrp `  G )  <->  B  e.  (SubGrp `  G ) ) )
14 eqeq2 2633 . . . . . . . 8  |-  ( t  =  B  ->  (
( G DProd  s )  =  t  <->  ( G DProd  s
)  =  B ) )
1514anbi2d 740 . . . . . . 7  |-  ( t  =  B  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  ( G dom DProd  s  /\  ( G DProd 
s )  =  B ) ) )
1615rexbidv 3052 . . . . . 6  |-  ( t  =  B  ->  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) ) )
1713, 16imbi12d 334 . . . . 5  |-  ( t  =  B  ->  (
( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) )  <->  ( B  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) ) ) )
1817imbi2d 330 . . . 4  |-  ( t  =  B  ->  (
( ph  ->  ( t  e.  (SubGrp `  G
)  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )  <->  ( ph  ->  ( B  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) ) ) ) )
19 bi2.04 376 . . . . . . . . 9  |-  ( ( t  C.  u  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )  <->  ( t  e.  (SubGrp `  G )  ->  ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) )
2019imbi2i 326 . . . . . . . 8  |-  ( (
ph  ->  ( t  C.  u  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) )  <->  ( ph  ->  ( t  e.  (SubGrp `  G )  ->  (
t  C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) ) )
21 bi2.04 376 . . . . . . . 8  |-  ( ( t  C.  u  ->  (
ph  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) )  <->  ( ph  ->  ( t  C.  u  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) ) )
22 bi2.04 376 . . . . . . . 8  |-  ( ( t  e.  (SubGrp `  G )  ->  ( ph  ->  ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) )  <->  ( ph  ->  ( t  e.  (SubGrp `  G )  ->  (
t  C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) ) )
2320, 21, 223bitr4i 292 . . . . . . 7  |-  ( ( t  C.  u  ->  (
ph  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) )  <->  ( t  e.  (SubGrp `  G )  ->  ( ph  ->  (
t  C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) ) )
2423albii 1747 . . . . . 6  |-  ( A. t ( t  C.  u  ->  ( ph  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) )  <->  A. t
( t  e.  (SubGrp `  G )  ->  ( ph  ->  ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) ) )
25 df-ral 2917 . . . . . 6  |-  ( A. t  e.  (SubGrp `  G
) ( ph  ->  ( t  C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) )  <->  A. t ( t  e.  (SubGrp `  G
)  ->  ( ph  ->  ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) ) ) )
26 r19.21v 2960 . . . . . 6  |-  ( A. t  e.  (SubGrp `  G
) ( ph  ->  ( t  C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) )  <->  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) )
2724, 25, 263bitr2i 288 . . . . 5  |-  ( A. t ( t  C.  u  ->  ( ph  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) )  <->  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) )
28 pgpfac.c . . . . . . . . 9  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
291adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  G  e.  Abel )
30 pgpfac.p . . . . . . . . . 10  |-  ( ph  ->  P pGrp  G )
3130adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  P pGrp  G )
326adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  B  e.  Fin )
33 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  u  e.  (SubGrp `  G ) )
34 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
35 psseq1 3694 . . . . . . . . . . . 12  |-  ( t  =  x  ->  (
t  C.  u  <->  x  C.  u
) )
36 eqeq2 2633 . . . . . . . . . . . . . 14  |-  ( t  =  x  ->  (
( G DProd  s )  =  t  <->  ( G DProd  s
)  =  x ) )
3736anbi2d 740 . . . . . . . . . . . . 13  |-  ( t  =  x  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  ( G dom DProd  s  /\  ( G DProd 
s )  =  x ) ) )
3837rexbidv 3052 . . . . . . . . . . . 12  |-  ( t  =  x  ->  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  x ) ) )
3935, 38imbi12d 334 . . . . . . . . . . 11  |-  ( t  =  x  ->  (
( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  <-> 
( x  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  x ) ) ) )
4039cbvralv 3171 . . . . . . . . . 10  |-  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  <->  A. x  e.  (SubGrp `  G ) ( x 
C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  x ) ) )
4134, 40sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  A. x  e.  (SubGrp `  G ) ( x 
C.  u  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  x ) ) )
423, 28, 29, 31, 32, 33, 41pgpfaclem3 18482 . . . . . . . 8  |-  ( (
ph  /\  ( A. t  e.  (SubGrp `  G
) ( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  /\  u  e.  (SubGrp `  G ) ) )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  u ) )
4342exp32 631 . . . . . . 7  |-  ( ph  ->  ( A. t  e.  (SubGrp `  G )
( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  ->  ( u  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  u ) ) ) )
4443a1i 11 . . . . . 6  |-  ( u  e.  Fin  ->  ( ph  ->  ( A. t  e.  (SubGrp `  G )
( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  ->  ( u  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  u ) ) ) ) )
4544a2d 29 . . . . 5  |-  ( u  e.  Fin  ->  (
( ph  ->  A. t  e.  (SubGrp `  G )
( t  C.  u  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) )  ->  ( ph  ->  ( u  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  u ) ) ) ) )
4627, 45syl5bi 232 . . . 4  |-  ( u  e.  Fin  ->  ( A. t ( t  C.  u  ->  ( ph  ->  ( t  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) ) )  -> 
( ph  ->  ( u  e.  (SubGrp `  G
)  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  u ) ) ) ) )
4712, 18, 46findcard3 8203 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  e.  (SubGrp `  G )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) ) ) )
486, 47mpcom 38 . 2  |-  ( ph  ->  ( B  e.  (SubGrp `  G )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) ) )
495, 48mpd 15 1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C. wpss 3575   class class class wbr 4653   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955  Word cword 13291   Basecbs 15857   ↾s cress 15858   Grpcgrp 17422  SubGrpcsubg 17588   pGrp cpgp 17946   Abelcabl 18194  CycGrpccyg 18279   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394
This theorem is referenced by:  ablfaclem3  18486
  Copyright terms: Public domain W3C validator