MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim2 Structured version   Visualization version   GIF version

Theorem cxploglim2 24705
Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
cxploglim2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxploglim2
StepHypRef Expression
1 3re 11094 . . 3 3 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 3 ∈ ℝ)
3 0red 10041 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
43recnd 10068 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℂ)
5 ovexd 6680 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V)
6 simpr 477 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
7 recl 13850 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
87adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
9 1re 10039 . . . . . . 7 1 ∈ ℝ
10 ifcl 4130 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
118, 9, 10sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
129a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
13 0lt1 10550 . . . . . . . 8 0 < 1
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < 1)
15 max1 12016 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
169, 8, 15sylancr 695 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
173, 12, 11, 14, 16ltletrd 10197 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
1811, 17elrpd 11869 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
196, 18rpdivcld 11889 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
20 cxploglim 24704 . . . 4 ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
225, 21, 18rlimcxp 24700 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ⇝𝑟 0)
235, 21rlimmptrcl 14338 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ)
2411adantr 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
2524recnd 10068 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
2623, 25cxpcld 24454 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
27 relogcl 24322 . . . . . 6 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2827adantl 482 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
2928recnd 10068 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℂ)
30 simpll 790 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3129, 30cxpcld 24454 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
32 simpr 477 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
33 rpre 11839 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3433ad2antlr 763 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
3532, 34rpcxpcld 24476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℝ+)
3635rpcnd 11874 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℂ)
3735rpne0d 11877 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ≠ 0)
3831, 36, 37divcld 10801 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
3938adantrr 753 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
4039abscld 14175 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ∈ ℝ)
41 rpre 11839 . . . . . . . . 9 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
4241ad2antrl 764 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ)
439a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ)
441a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ)
45 1lt3 11196 . . . . . . . . . 10 1 < 3
4645a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3)
47 simprr 796 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛)
4843, 44, 42, 46, 47ltletrd 10197 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛)
4942, 48rplogcld 24375 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ+)
5032adantrr 753 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+)
5133ad2antlr 763 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ)
5218adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
5351, 52rerpdivcld 11903 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5450, 53rpcxpcld 24476 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+)
5549, 54rpdivcld 11889 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℝ+)
5611adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
5755, 56rpcxpcld 24476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
5857rpred 11872 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5926adantrr 753 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
6059abscld 14175 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ)
6131adantrr 753 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
6261abscld 14175 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈ ℝ)
6349, 56rpcxpcld 24476 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
6463rpred 11872 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
6535adantrr 753 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐𝐵) ∈ ℝ+)
66 simpll 790 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ)
67 abscxp 24438 . . . . . . . 8 (((log‘𝑛) ∈ ℝ+𝐴 ∈ ℂ) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6849, 66, 67syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6966recld 13934 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ)
70 max2 12018 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
719, 69, 70sylancr 695 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
7227ad2antrl 764 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ)
73 loge 24333 . . . . . . . . . 10 (log‘e) = 1
74 ere 14819 . . . . . . . . . . . . 13 e ∈ ℝ
7574a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ)
76 egt2lt3 14934 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
7776simpri 478 . . . . . . . . . . . . 13 e < 3
7877a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 3)
7975, 44, 42, 78, 47ltletrd 10197 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛)
80 epr 14936 . . . . . . . . . . . 12 e ∈ ℝ+
81 logltb 24346 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑛 ∈ ℝ+) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8280, 50, 81sylancr 695 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8379, 82mpbid 222 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛))
8473, 83syl5eqbrr 4689 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛))
8572, 84, 69, 56cxpled 24466 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
8671, 85mpbid 222 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8768, 86eqbrtrd 4675 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8862, 64, 65, 87lediv1dd 11930 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
8931, 36, 37absdivd 14194 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9089adantrr 753 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9165rprege0d 11879 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)))
92 absid 14036 . . . . . . . 8 (((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9391, 92syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9493oveq2d 6666 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9590, 94eqtrd 2656 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9649rprege0d 11879 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)))
9711recnd 10068 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
9897adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
99 divcxp 24433 . . . . . . 7 ((((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10096, 54, 98, 99syl3anc 1326 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10150, 53, 98cxpmuld 24480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
10251recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ)
10352rpne0d 11877 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0)
104102, 98, 103divcan1d 10802 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = 𝐵)
105104oveq2d 6666 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (𝑛𝑐𝐵))
106101, 105eqtr3d 2658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (𝑛𝑐𝐵))
107106oveq2d 6666 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
108100, 107eqtrd 2656 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
10988, 95, 1083brtr4d 4685 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
11058leabsd 14153 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11140, 58, 60, 109, 110letrd 10194 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11239subid1d 10381 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)))
113112fveq2d 6195 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) = (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))))
11459subid1d 10381 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0) = (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
115114fveq2d 6195 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)) = (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
116111, 113, 1153brtr4d 4685 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) ≤ (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)))
1172, 4, 22, 26, 38, 116rlimsqzlem 14379 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  3c3 11071  +crp 11832  cre 13837  abscabs 13974  𝑟 crli 14216  eceu 14793  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  logexprlim  24950
  Copyright terms: Public domain W3C validator