| Step | Hyp | Ref
| Expression |
| 1 | | 2z 11409 |
. . . . 5
⊢ 2 ∈
ℤ |
| 2 | | simplr 792 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ) |
| 3 | | zmulcl 11426 |
. . . . 5
⊢ ((2
∈ ℤ ∧ 𝑁
∈ ℤ) → (2 · 𝑁) ∈ ℤ) |
| 4 | 1, 2, 3 | sylancr 695 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (2 · 𝑁) ∈
ℤ) |
| 5 | | zsubcl 11419 |
. . . . 5
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 − 𝑀) ∈ ℤ) |
| 6 | 5 | adantl 482 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − 𝑀) ∈ ℤ) |
| 7 | | divides 14985 |
. . . 4
⊢ (((2
· 𝑁) ∈ ℤ
∧ (𝐾 − 𝑀) ∈ ℤ) → ((2
· 𝑁) ∥ (𝐾 − 𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀))) |
| 8 | 4, 6, 7 | syl2anc 693 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − 𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀))) |
| 9 | | simplll 798 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈
(ℤ≥‘2)) |
| 10 | | simplrr 801 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑀 ∈ ℤ) |
| 11 | | simpllr 799 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ) |
| 12 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ) |
| 13 | | jm2.25 37566 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) |
| 14 | 9, 10, 11, 12, 13 | syl121anc 1331 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) |
| 15 | 14 | adantr 481 |
. . . . . 6
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) |
| 16 | | oveq2 6658 |
. . . . . . . . 9
⊢ ((𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐾 − 𝑀))) |
| 17 | 16 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐾 − 𝑀)))) |
| 18 | | zcn 11382 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 19 | | zcn 11382 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
| 20 | | pncan3 10289 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + (𝐾 − 𝑀)) = 𝐾) |
| 21 | 18, 19, 20 | syl2anr 495 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 + (𝐾 − 𝑀)) = 𝐾) |
| 22 | 21 | ad2antlr 763 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝑀 + (𝐾 − 𝑀)) = 𝐾) |
| 23 | 22 | oveq2d 6666 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝐾 − 𝑀))) = (𝐴 Yrm 𝐾)) |
| 24 | 17, 23 | sylan9eqr 2678 |
. . . . . . 7
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀)) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾)) |
| 25 | | eqidd 2623 |
. . . . . . 7
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀)) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑀)) |
| 26 | 24, 25 | acongeq12d 37546 |
. . . . . 6
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 27 | 15, 26 | mpbid 222 |
. . . . 5
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
| 28 | 27 | ex 450 |
. . . 4
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 29 | 28 | rexlimdva 3031 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − 𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 30 | 8, 29 | sylbid 230 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − 𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 31 | | simprl 794 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ) |
| 32 | | znegcl 11412 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → -𝑀 ∈
ℤ) |
| 33 | 32 | ad2antll 765 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → -𝑀 ∈ ℤ) |
| 34 | 31, 33 | zsubcld 11487 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − -𝑀) ∈ ℤ) |
| 35 | | divides 14985 |
. . . 4
⊢ (((2
· 𝑁) ∈ ℤ
∧ (𝐾 − -𝑀) ∈ ℤ) → ((2
· 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀))) |
| 36 | 4, 34, 35 | syl2anc 693 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀))) |
| 37 | | frmx 37478 |
. . . . . . . . . . 11
⊢
Xrm :((ℤ≥‘2) ×
ℤ)⟶ℕ0 |
| 38 | 37 | fovcl 6765 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
| 39 | 38 | nn0zd 11480 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
| 40 | 9, 11, 39 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
| 41 | | simplrl 800 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐾 ∈ ℤ) |
| 42 | | frmy 37479 |
. . . . . . . . . 10
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
| 43 | 42 | fovcl 6765 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ) |
| 44 | 9, 41, 43 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ) |
| 45 | 42 | fovcl 6765 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
| 46 | 9, 10, 45 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
| 47 | 40, 44, 46 | 3jca 1242 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ)) |
| 48 | 47 | adantr 481 |
. . . . . 6
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ)) |
| 49 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → -𝑀 ∈ ℤ) |
| 50 | | jm2.25 37566 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀)))) |
| 51 | 9, 49, 11, 12, 50 | syl121anc 1331 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀)))) |
| 52 | 51 | adantr 481 |
. . . . . . 7
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀)))) |
| 53 | | oveq2 6658 |
. . . . . . . . . 10
⊢ ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (-𝑀 + (𝑎 · (2 · 𝑁))) = (-𝑀 + (𝐾 − -𝑀))) |
| 54 | 53 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀)))) |
| 55 | 18 | negcld 10379 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → -𝑀 ∈
ℂ) |
| 56 | | pncan3 10289 |
. . . . . . . . . . . 12
⊢ ((-𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾) |
| 57 | 55, 19, 56 | syl2anr 495 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾) |
| 58 | 57 | ad2antlr 763 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾) |
| 59 | 58 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))) = (𝐴 Yrm 𝐾)) |
| 60 | 54, 59 | sylan9eqr 2678 |
. . . . . . . 8
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾)) |
| 61 | | rmyneg 37493 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀)) |
| 62 | 9, 10, 61 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀)) |
| 63 | 62 | adantr 481 |
. . . . . . . 8
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀)) |
| 64 | 60, 63 | acongeq12d 37546 |
. . . . . . 7
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀))))) |
| 65 | 52, 64 | mpbid 222 |
. . . . . 6
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) |
| 66 | | acongneg2 37544 |
. . . . . 6
⊢ ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
| 67 | 48, 65, 66 | syl2anc 693 |
. . . . 5
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
| 68 | 67 | ex 450 |
. . . 4
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 69 | 68 | rexlimdva 3031 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 70 | 36, 69 | sylbid 230 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
| 71 | 30, 70 | jaod 395 |
1
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾 − 𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |