MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnv Structured version   Visualization version   Unicode version

Theorem pi1xfrcnv 22857
Description: Given a path  F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p  |-  P  =  ( J  pi1 
( F `  0
) )
pi1xfr.q  |-  Q  =  ( J  pi1 
( F `  1
) )
pi1xfr.b  |-  B  =  ( Base `  P
)
pi1xfr.g  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
pi1xfr.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1xfr.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pi1xfr.i  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pi1xfrcnv.h  |-  H  =  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)
Assertion
Ref Expression
pi1xfrcnv  |-  ( ph  ->  ( `' G  =  H  /\  `' G  e.  ( Q  GrpHom  P ) ) )
Distinct variable groups:    g, h, x, B    g, F, h, x    g, I, h, x    h, G    ph, g, h, x    g, J, h, x    P, g, h, x    Q, g, h, x
Allowed substitution hints:    G( x, g)    H( x, g, h)    X( x, g, h)

Proof of Theorem pi1xfrcnv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . . 4  |-  P  =  ( J  pi1 
( F `  0
) )
2 pi1xfr.q . . . 4  |-  Q  =  ( J  pi1 
( F `  1
) )
3 pi1xfr.b . . . 4  |-  B  =  ( Base `  P
)
4 pi1xfr.g . . . 4  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
5 pi1xfr.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 pi1xfr.f . . . 4  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
7 pi1xfr.i . . . 4  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
8 pi1xfrcnv.h . . . 4  |-  H  =  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)
91, 2, 3, 4, 5, 6, 7, 8pi1xfrcnvlem 22856 . . 3  |-  ( ph  ->  `' G  C_  H )
10 fvex 6201 . . . . . . . 8  |-  (  ~=ph  `  J )  e.  _V
11 ecexg 7746 . . . . . . . 8  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ h ]
(  ~=ph  `  J )  e.  _V )
1210, 11mp1i 13 . . . . . . 7  |-  ( (
ph  /\  h  e.  U. ( Base `  Q
) )  ->  [ h ] (  ~=ph  `  J
)  e.  _V )
13 ecexg 7746 . . . . . . . 8  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ ( F ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )  e.  _V )
1410, 13mp1i 13 . . . . . . 7  |-  ( (
ph  /\  h  e.  U. ( Base `  Q
) )  ->  [ ( F ( *p `  J ) ( h ( *p `  J
) I ) ) ] (  ~=ph  `  J
)  e.  _V )
158, 12, 14fliftrel 6558 . . . . . 6  |-  ( ph  ->  H  C_  ( _V  X.  _V ) )
16 df-rel 5121 . . . . . 6  |-  ( Rel 
H  <->  H  C_  ( _V 
X.  _V ) )
1715, 16sylibr 224 . . . . 5  |-  ( ph  ->  Rel  H )
18 dfrel2 5583 . . . . 5  |-  ( Rel 
H  <->  `' `' H  =  H
)
1917, 18sylib 208 . . . 4  |-  ( ph  ->  `' `' H  =  H
)
20 0elunit 12290 . . . . . . . . . 10  |-  0  e.  ( 0 [,] 1
)
21 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
1  -  x )  =  ( 1  -  0 ) )
22 1m0e1 11131 . . . . . . . . . . . . 13  |-  ( 1  -  0 )  =  1
2321, 22syl6eq 2672 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
1  -  x )  =  1 )
2423fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( F `  ( 1  -  x ) )  =  ( F `  1
) )
25 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 1 )  e. 
_V
2624, 7, 25fvmpt 6282 . . . . . . . . . 10  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
I `  0 )  =  ( F ` 
1 ) )
2720, 26ax-mp 5 . . . . . . . . 9  |-  ( I `
 0 )  =  ( F `  1
)
2827oveq2i 6661 . . . . . . . 8  |-  ( J  pi1  ( I `
 0 ) )  =  ( J  pi1  ( F ` 
1 ) )
292, 28eqtr4i 2647 . . . . . . 7  |-  Q  =  ( J  pi1 
( I `  0
) )
30 1elunit 12291 . . . . . . . . . 10  |-  1  e.  ( 0 [,] 1
)
31 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
1  -  x )  =  ( 1  -  1 ) )
3231fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  1 ) ) )
33 1m1e0 11089 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
3433fveq2i 6194 . . . . . . . . . . . 12  |-  ( F `
 ( 1  -  1 ) )  =  ( F `  0
)
3532, 34syl6eq 2672 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( F `  ( 1  -  x ) )  =  ( F `  0
) )
36 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 0 )  e. 
_V
3735, 7, 36fvmpt 6282 . . . . . . . . . 10  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
I `  1 )  =  ( F ` 
0 ) )
3830, 37ax-mp 5 . . . . . . . . 9  |-  ( I `
 1 )  =  ( F `  0
)
3938oveq2i 6661 . . . . . . . 8  |-  ( J  pi1  ( I `
 1 ) )  =  ( J  pi1  ( F ` 
0 ) )
401, 39eqtr4i 2647 . . . . . . 7  |-  P  =  ( J  pi1 
( I `  1
) )
41 eqid 2622 . . . . . . 7  |-  ( Base `  Q )  =  (
Base `  Q )
42 eqid 2622 . . . . . . 7  |-  ran  (
h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )  =  ran  ( h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )
437pcorevcl 22825 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
I  e.  ( II 
Cn  J )  /\  ( I `  0
)  =  ( F `
 1 )  /\  ( I `  1
)  =  ( F `
 0 ) ) )
446, 43syl 17 . . . . . . . 8  |-  ( ph  ->  ( I  e.  ( II  Cn  J )  /\  ( I ` 
0 )  =  ( F `  1 )  /\  ( I ` 
1 )  =  ( F `  0 ) ) )
4544simp1d 1073 . . . . . . 7  |-  ( ph  ->  I  e.  ( II 
Cn  J ) )
46 oveq2 6658 . . . . . . . . 9  |-  ( z  =  y  ->  (
1  -  z )  =  ( 1  -  y ) )
4746fveq2d 6195 . . . . . . . 8  |-  ( z  =  y  ->  (
I `  ( 1  -  z ) )  =  ( I `  ( 1  -  y
) ) )
4847cbvmptv 4750 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) )  =  ( y  e.  ( 0 [,] 1
)  |->  ( I `  ( 1  -  y
) ) )
49 eqid 2622 . . . . . . 7  |-  ran  (
g  e.  U. ( Base `  P )  |->  <. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. )  =  ran  ( g  e.  U. ( Base `  P )  |-> 
<. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. )
5029, 40, 41, 42, 5, 45, 48, 49pi1xfrcnvlem 22856 . . . . . 6  |-  ( ph  ->  `' ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )  C_  ran  (
g  e.  U. ( Base `  P )  |->  <. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. ) )
51 iitopon 22682 . . . . . . . . . . . . . . . . 17  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
5251a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
53 cnf2 21053 . . . . . . . . . . . . . . . 16  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  F  e.  (
II  Cn  J )
)  ->  F :
( 0 [,] 1
) --> X )
5452, 5, 6, 53syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : ( 0 [,] 1 ) --> X )
5554feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  =  ( z  e.  ( 0 [,] 1 )  |->  ( F `
 z ) ) )
56 iirev 22728 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( 0 [,] 1 )  ->  (
1  -  z )  e.  ( 0 [,] 1 ) )
57 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( 1  -  z )  ->  (
1  -  x )  =  ( 1  -  ( 1  -  z
) ) )
5857fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( 1  -  z )  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  ( 1  -  z ) ) ) )
59 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 ( 1  -  ( 1  -  z
) ) )  e. 
_V
6058, 7, 59fvmpt 6282 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  z )  e.  ( 0 [,] 1 )  ->  (
I `  ( 1  -  z ) )  =  ( F `  ( 1  -  (
1  -  z ) ) ) )
6156, 60syl 17 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( 0 [,] 1 )  ->  (
I `  ( 1  -  z ) )  =  ( F `  ( 1  -  (
1  -  z ) ) ) )
62 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
63 unitssre 12319 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0 [,] 1 )  C_  RR
6463sseli 3599 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( 0 [,] 1 )  ->  z  e.  RR )
6564recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( 0 [,] 1 )  ->  z  e.  CC )
66 nncan 10310 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( 1  -  (
1  -  z ) )  =  z )
6762, 65, 66sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  -  z ) )  =  z )
6867fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( 1  -  z ) ) )  =  ( F `  z ) )
6961, 68eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( 0 [,] 1 )  ->  (
I `  ( 1  -  z ) )  =  ( F `  z ) )
7069mpteq2ia 4740 . . . . . . . . . . . . . 14  |-  ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( F `  z ) )
7155, 70syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( ph  ->  F  =  ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) )
7271oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( F ( *p
`  J ) ( h ( *p `  J ) I ) )  =  ( ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ( *p `  J ) ( h ( *p `  J
) I ) ) )
7372eceq1d 7783 . . . . . . . . . . 11  |-  ( ph  ->  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J )  =  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J ) )
7473opeq2d 4409 . . . . . . . . . 10  |-  ( ph  -> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.  =  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )
7574mpteq2dv 4745 . . . . . . . . 9  |-  ( ph  ->  ( h  e.  U. ( Base `  Q )  |-> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  =  ( h  e.  U. ( Base `  Q )  |->  <. [ h ] (  ~=ph  `  J
) ,  [ ( ( z  e.  ( 0 [,] 1 ) 
|->  ( I `  (
1  -  z ) ) ) ( *p
`  J ) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J ) >. )
)
7675rneqd 5353 . . . . . . . 8  |-  ( ph  ->  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  =  ran  (
h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. ) )
778, 76syl5eq 2668 . . . . . . 7  |-  ( ph  ->  H  =  ran  (
h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. ) )
7877cnveqd 5298 . . . . . 6  |-  ( ph  ->  `' H  =  `' ran  ( h  e.  U. ( Base `  Q )  |-> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. ) )
793a1i 11 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( Base `  P ) )
8079unieqd 4446 . . . . . . . . 9  |-  ( ph  ->  U. B  =  U. ( Base `  P )
)
8171oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( g ( *p
`  J ) F )  =  ( g ( *p `  J
) ( z  e.  ( 0 [,] 1
)  |->  ( I `  ( 1  -  z
) ) ) ) )
8281oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( I ( *p
`  J ) ( g ( *p `  J ) F ) )  =  ( I ( *p `  J
) ( g ( *p `  J ) ( z  e.  ( 0 [,] 1 ) 
|->  ( I `  (
1  -  z ) ) ) ) ) )
8382eceq1d 7783 . . . . . . . . . 10  |-  ( ph  ->  [ ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ] ( 
~=ph  `  J )  =  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J ) )
8483opeq2d 4409 . . . . . . . . 9  |-  ( ph  -> 
<. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) >.  =  <. [ g ] (  ~=ph  `  J ) ,  [ ( I ( *p `  J
) ( g ( *p `  J ) ( z  e.  ( 0 [,] 1 ) 
|->  ( I `  (
1  -  z ) ) ) ) ) ] (  ~=ph  `  J
) >. )
8580, 84mpteq12dv 4733 . . . . . . . 8  |-  ( ph  ->  ( g  e.  U. B  |->  <. [ g ] (  ~=ph  `  J ) ,  [ ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ] (  ~=ph  `  J )
>. )  =  (
g  e.  U. ( Base `  P )  |->  <. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. ) )
8685rneqd 5353 . . . . . . 7  |-  ( ph  ->  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )  =  ran  ( g  e.  U. ( Base `  P )  |-> 
<. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. ) )
874, 86syl5eq 2668 . . . . . 6  |-  ( ph  ->  G  =  ran  (
g  e.  U. ( Base `  P )  |->  <. [ g ] ( 
~=ph  `  J ) ,  [ ( I ( *p `  J ) ( g ( *p
`  J ) ( z  e.  ( 0 [,] 1 )  |->  ( I `  ( 1  -  z ) ) ) ) ) ] (  ~=ph  `  J )
>. ) )
8850, 78, 873sstr4d 3648 . . . . 5  |-  ( ph  ->  `' H  C_  G )
89 cnvss 5294 . . . . 5  |-  ( `' H  C_  G  ->  `' `' H  C_  `' G
)
9088, 89syl 17 . . . 4  |-  ( ph  ->  `' `' H  C_  `' G
)
9119, 90eqsstr3d 3640 . . 3  |-  ( ph  ->  H  C_  `' G
)
929, 91eqssd 3620 . 2  |-  ( ph  ->  `' G  =  H
)
9392, 77eqtrd 2656 . . 3  |-  ( ph  ->  `' G  =  ran  ( h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. ) )
9429, 40, 41, 42, 5, 45, 48pi1xfr 22855 . . 3  |-  ( ph  ->  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( z  e.  ( 0 [,] 1 )  |->  ( I `
 ( 1  -  z ) ) ) ( *p `  J
) ( h ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )  e.  ( Q  GrpHom  P ) )
9593, 94eqeltrd 2701 . 2  |-  ( ph  ->  `' G  e.  ( Q  GrpHom  P ) )
9692, 95jca 554 1  |-  ( ph  ->  ( `' G  =  H  /\  `' G  e.  ( Q  GrpHom  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   [cec 7740   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    - cmin 10266   [,]cicc 12178   Basecbs 15857    GrpHom cghm 17657  TopOnctopon 20715    Cn ccn 21028   IIcii 22678    ~=ph cphtpc 22768   *pcpco 22800    pi1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808
This theorem is referenced by:  pi1xfrgim  22858
  Copyright terms: Public domain W3C validator