| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . 3
⊢ (𝐴 ∈ ℕ →
(2...𝐴) ∈
Fin) |
| 2 | | elfzuz 12338 |
. . . . . . . 8
⊢ (𝑛 ∈ (2...𝐴) → 𝑛 ∈
(ℤ≥‘2)) |
| 3 | | eluz2nn 11726 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘2) → 𝑛 ∈ ℕ) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ) |
| 5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ) |
| 6 | 5 | nnrpd 11870 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+) |
| 7 | 6 | relogcld 24369 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ) |
| 8 | 2 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈
(ℤ≥‘2)) |
| 9 | | uz2m1nn 11763 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘2) → (𝑛 − 1) ∈ ℕ) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ) |
| 11 | 5, 10 | nnmulcld 11068 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ) |
| 12 | 7, 11 | nndivred 11069 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈
ℝ) |
| 13 | 1, 12 | fsumrecl 14465 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈
ℝ) |
| 14 | | 2re 11090 |
. . . . 5
⊢ 2 ∈
ℝ |
| 15 | 10 | nnrpd 11870 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈
ℝ+) |
| 16 | 15 | rpsqrtcld 14150 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈
ℝ+) |
| 17 | | rerpdivcl 11861 |
. . . . 5
⊢ ((2
∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+)
→ (2 / (√‘(𝑛 − 1))) ∈
ℝ) |
| 18 | 14, 16, 17 | sylancr 695 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈
ℝ) |
| 19 | 6 | rpsqrtcld 14150 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈
ℝ+) |
| 20 | | rerpdivcl 11861 |
. . . . 5
⊢ ((2
∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 /
(√‘𝑛)) ∈
ℝ) |
| 21 | 14, 19, 20 | sylancr 695 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈
ℝ) |
| 22 | 18, 21 | resubcld 10458 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) ∈
ℝ) |
| 23 | 1, 22 | fsumrecl 14465 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) ∈
ℝ) |
| 24 | 14 | a1i 11 |
. 2
⊢ (𝐴 ∈ ℕ → 2 ∈
ℝ) |
| 25 | 16 | rpred 11872 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ) |
| 26 | 5 | nnred 11035 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ) |
| 27 | | peano2rem 10348 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
| 28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ) |
| 29 | 26, 28 | remulcld 10070 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ) |
| 30 | 29, 22 | remulcld 10070 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))) ∈ ℝ) |
| 31 | 5 | nncnd 11036 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ) |
| 32 | | ax-1cn 9994 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 33 | | npcan 10290 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
| 34 | 31, 32, 33 | sylancl 694 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛) |
| 35 | 34 | fveq2d 6195 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛)) |
| 36 | 15 | rpge0d 11876 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1)) |
| 37 | | loglesqrt 24499 |
. . . . . . 7
⊢ (((𝑛 − 1) ∈ ℝ ∧
0 ≤ (𝑛 − 1))
→ (log‘((𝑛
− 1) + 1)) ≤ (√‘(𝑛 − 1))) |
| 38 | 28, 36, 37 | syl2anc 693 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1))) |
| 39 | 35, 38 | eqbrtrrd 4677 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1))) |
| 40 | 19 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ) |
| 41 | 40, 25 | readdcld 10069 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈
ℝ) |
| 42 | | remulcl 10021 |
. . . . . . . . . . 11
⊢
(((√‘𝑛)
∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈
ℝ) |
| 43 | 40, 14, 42 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈
ℝ) |
| 44 | 40, 25 | resubcld 10458 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈
ℝ) |
| 45 | 26 | lem1d 10957 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛) |
| 46 | 6 | rpge0d 11876 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛) |
| 47 | 28, 36, 26, 46 | sqrtled 14165 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛))) |
| 48 | 45, 47 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛)) |
| 49 | 40, 25 | subge0d 10617 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔
(√‘(𝑛 −
1)) ≤ (√‘𝑛))) |
| 50 | 48, 49 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1)))) |
| 51 | 25, 40, 40, 48 | leadd2dd 10642 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛))) |
| 52 | 19 | rpcnd 11874 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ) |
| 53 | 52 | times2d 11276 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛))) |
| 54 | 51, 53 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2)) |
| 55 | 41, 43, 44, 50, 54 | lemul1ad 10963 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) ·
((√‘𝑛) −
(√‘(𝑛 −
1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1))))) |
| 56 | 31 | sqsqrtd 14178 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛) |
| 57 | | subcl 10280 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) |
| 58 | 31, 32, 57 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ) |
| 59 | 58 | sqsqrtd 14178 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1)) |
| 60 | 56, 59 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) −
((√‘(𝑛 −
1))↑2)) = (𝑛 −
(𝑛 −
1))) |
| 61 | 16 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ) |
| 62 | | subsq 12972 |
. . . . . . . . . . 11
⊢
(((√‘𝑛)
∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) →
(((√‘𝑛)↑2)
− ((√‘(𝑛
− 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1))))) |
| 63 | 52, 61, 62 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) −
((√‘(𝑛 −
1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1))))) |
| 64 | | nncan 10310 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
(𝑛 − 1)) =
1) |
| 65 | 31, 32, 64 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1) |
| 66 | 60, 63, 65 | 3eqtr3d 2664 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) ·
((√‘𝑛) −
(√‘(𝑛 −
1)))) = 1) |
| 67 | | 2cn 11091 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 68 | 67 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ) |
| 69 | 44 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈
ℂ) |
| 70 | 52, 68, 69 | mulassd 10063 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) ·
((√‘𝑛) −
(√‘(𝑛 −
1)))) = ((√‘𝑛)
· (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))) |
| 71 | 55, 66, 70 | 3brtr3d 4684 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1)))))) |
| 72 | | 1red 10055 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ) |
| 73 | | remulcl 10021 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))) ∈ ℝ) |
| 74 | 14, 44, 73 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈
ℝ) |
| 75 | 40, 74 | remulcld 10070 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈
ℝ) |
| 76 | 72, 75, 16 | lemul1d 11915 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1))))) · (√‘(𝑛 − 1))))) |
| 77 | 71, 76 | mpbid 222 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤
(((√‘𝑛)
· (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ·
(√‘(𝑛 −
1)))) |
| 78 | 61 | mulid2d 10058 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) =
(√‘(𝑛 −
1))) |
| 79 | 74 | recnd 10068 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈
ℂ) |
| 80 | 52, 79, 61 | mul32d 10246 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))))) |
| 81 | 77, 78, 80 | 3brtr3d 4684 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))))) |
| 82 | | remsqsqrt 13997 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) →
((√‘𝑛) ·
(√‘𝑛)) = 𝑛) |
| 83 | 26, 46, 82 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛) |
| 84 | | remsqsqrt 13997 |
. . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ ℝ ∧
0 ≤ (𝑛 − 1))
→ ((√‘(𝑛
− 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1)) |
| 85 | 28, 36, 84 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ·
(√‘(𝑛 −
1))) = (𝑛 −
1)) |
| 86 | 83, 85 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) ·
((√‘(𝑛 −
1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1))) |
| 87 | 52, 52, 61, 61 | mul4d 10248 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) ·
((√‘(𝑛 −
1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) ·
((√‘𝑛) ·
(√‘(𝑛 −
1))))) |
| 88 | 86, 87 | eqtr3d 2658 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) ·
((√‘𝑛) ·
(√‘(𝑛 −
1))))) |
| 89 | 16 | rpcnne0d 11881 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ
∧ (√‘(𝑛
− 1)) ≠ 0)) |
| 90 | 19 | rpcnne0d 11881 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0)) |
| 91 | | divsubdiv 10741 |
. . . . . . . . . 10
⊢ (((2
∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ
∧ (√‘(𝑛
− 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 ·
(√‘(𝑛 −
1)))) / ((√‘(𝑛
− 1)) · (√‘𝑛)))) |
| 92 | 68, 68, 89, 90, 91 | syl22anc 1327 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) = (((2
· (√‘𝑛))
− (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) ·
(√‘𝑛)))) |
| 93 | 68, 52, 61 | subdid 10486 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 ·
(√‘𝑛)) −
(2 · (√‘(𝑛 − 1))))) |
| 94 | 52, 61 | mulcomd 10061 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) ·
(√‘𝑛))) |
| 95 | 93, 94 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) /
((√‘𝑛) ·
(√‘(𝑛 −
1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) /
((√‘(𝑛 −
1)) · (√‘𝑛)))) |
| 96 | 92, 95 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) = ((2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) |
| 97 | 88, 96 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) |
| 98 | 52, 61 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈
ℂ) |
| 99 | 19, 16 | rpmulcld 11888 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈
ℝ+) |
| 100 | 74, 99 | rerpdivcld 11903 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) /
((√‘𝑛) ·
(√‘(𝑛 −
1)))) ∈ ℝ) |
| 101 | 100 | recnd 10068 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) /
((√‘𝑛) ·
(√‘(𝑛 −
1)))) ∈ ℂ) |
| 102 | 98, 98, 101 | mulassd 10063 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) ·
((√‘𝑛) ·
(√‘(𝑛 −
1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) =
(((√‘𝑛)
· (√‘(𝑛
− 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 ·
((√‘𝑛) −
(√‘(𝑛 −
1)))) / ((√‘𝑛)
· (√‘(𝑛
− 1))))))) |
| 103 | 99 | rpne0d 11877 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0) |
| 104 | 79, 98, 103 | divcan2d 10803 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2
· ((√‘𝑛)
− (√‘(𝑛
− 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1))))) |
| 105 | 104 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) ·
(((√‘𝑛)
· (√‘(𝑛
− 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) =
(((√‘𝑛)
· (√‘(𝑛
− 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))) |
| 106 | 97, 102, 105 | 3eqtrd 2660 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 ·
((√‘𝑛) −
(√‘(𝑛 −
1)))))) |
| 107 | 81, 106 | breqtrrd 4681 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛))))) |
| 108 | 7, 25, 30, 39, 107 | letrd 10194 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛))))) |
| 109 | 11 | nngt0d 11064 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1))) |
| 110 | | ledivmul 10899 |
. . . . 5
⊢
(((log‘𝑛)
∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) ∈
ℝ ∧ ((𝑛 ·
(𝑛 − 1)) ∈
ℝ ∧ 0 < (𝑛
· (𝑛 − 1))))
→ (((log‘𝑛) /
(𝑛 · (𝑛 − 1))) ≤ ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))))) |
| 111 | 7, 22, 29, 109, 110 | syl112anc 1330 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))))) |
| 112 | 108, 111 | mpbird 247 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))) |
| 113 | 1, 12, 22, 112 | fsumle 14531 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛)))) |
| 114 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1)) |
| 115 | 114 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1))) |
| 116 | 115 | oveq2d 6666 |
. . . . 5
⊢ (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 /
(√‘(𝑛 −
1)))) |
| 117 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝑘 − 1) = ((𝑛 + 1) − 1)) |
| 118 | 117 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) =
(√‘((𝑛 + 1)
− 1))) |
| 119 | 118 | oveq2d 6666 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 /
(√‘((𝑛 + 1)
− 1)))) |
| 120 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → (𝑘 − 1) = (2 − 1)) |
| 121 | | 2m1e1 11135 |
. . . . . . . . . 10
⊢ (2
− 1) = 1 |
| 122 | 120, 121 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑘 = 2 → (𝑘 − 1) = 1) |
| 123 | 122 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑘 = 2 →
(√‘(𝑘 −
1)) = (√‘1)) |
| 124 | | sqrt1 14012 |
. . . . . . . 8
⊢
(√‘1) = 1 |
| 125 | 123, 124 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑘 = 2 →
(√‘(𝑘 −
1)) = 1) |
| 126 | 125 | oveq2d 6666 |
. . . . . 6
⊢ (𝑘 = 2 → (2 /
(√‘(𝑘 −
1))) = (2 / 1)) |
| 127 | 67 | div1i 10753 |
. . . . . 6
⊢ (2 / 1) =
2 |
| 128 | 126, 127 | syl6eq 2672 |
. . . . 5
⊢ (𝑘 = 2 → (2 /
(√‘(𝑘 −
1))) = 2) |
| 129 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = (𝐴 + 1) → (𝑘 − 1) = ((𝐴 + 1) − 1)) |
| 130 | 129 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) =
(√‘((𝐴 + 1)
− 1))) |
| 131 | 130 | oveq2d 6666 |
. . . . 5
⊢ (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 /
(√‘((𝐴 + 1)
− 1)))) |
| 132 | | nnz 11399 |
. . . . 5
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 133 | | eluzp1p1 11713 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘1) → (𝐴 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 134 | | nnuz 11723 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 135 | 133, 134 | eleq2s 2719 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 136 | | df-2 11079 |
. . . . . . 7
⊢ 2 = (1 +
1) |
| 137 | 136 | fveq2i 6194 |
. . . . . 6
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 138 | 135, 137 | syl6eleqr 2712 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈
(ℤ≥‘2)) |
| 139 | | elfzuz 12338 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈
(ℤ≥‘2)) |
| 140 | | uz2m1nn 11763 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘2) → (𝑘 − 1) ∈ ℕ) |
| 141 | 139, 140 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ) |
| 142 | 141 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ) |
| 143 | 142 | nnrpd 11870 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈
ℝ+) |
| 144 | 143 | rpsqrtcld 14150 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈
ℝ+) |
| 145 | | rerpdivcl 11861 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+)
→ (2 / (√‘(𝑘 − 1))) ∈
ℝ) |
| 146 | 14, 144, 145 | sylancr 695 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈
ℝ) |
| 147 | 146 | recnd 10068 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈
ℂ) |
| 148 | 116, 119,
128, 131, 132, 138, 147 | telfsum 14536 |
. . . 4
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘((𝑛 + 1)
− 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1))))) |
| 149 | | pncan 10287 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
| 150 | 31, 32, 149 | sylancl 694 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛) |
| 151 | 150 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) =
(√‘𝑛)) |
| 152 | 151 | oveq2d 6666 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 /
(√‘𝑛))) |
| 153 | 152 | oveq2d 6666 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘((𝑛 + 1)
− 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛)))) |
| 154 | 153 | sumeq2dv 14433 |
. . . 4
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘((𝑛 + 1)
− 1)))) = Σ𝑛
∈ (2...𝐴)((2 /
(√‘(𝑛 −
1))) − (2 / (√‘𝑛)))) |
| 155 | | nncn 11028 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 156 | | pncan 10287 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 + 1)
− 1) = 𝐴) |
| 157 | 155, 32, 156 | sylancl 694 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴) |
| 158 | 157 | fveq2d 6195 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(√‘((𝐴 + 1)
− 1)) = (√‘𝐴)) |
| 159 | 158 | oveq2d 6666 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (2 /
(√‘((𝐴 + 1)
− 1))) = (2 / (√‘𝐴))) |
| 160 | 159 | oveq2d 6666 |
. . . 4
⊢ (𝐴 ∈ ℕ → (2
− (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 /
(√‘𝐴)))) |
| 161 | 148, 154,
160 | 3eqtr3d 2664 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) = (2
− (2 / (√‘𝐴)))) |
| 162 | | 2rp 11837 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
| 163 | | nnrp 11842 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ+) |
| 164 | 163 | rpsqrtcld 14150 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(√‘𝐴) ∈
ℝ+) |
| 165 | | rpdivcl 11856 |
. . . . . 6
⊢ ((2
∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 /
(√‘𝐴)) ∈
ℝ+) |
| 166 | 162, 164,
165 | sylancr 695 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (2 /
(√‘𝐴)) ∈
ℝ+) |
| 167 | 166 | rpge0d 11876 |
. . . 4
⊢ (𝐴 ∈ ℕ → 0 ≤ (2
/ (√‘𝐴))) |
| 168 | 166 | rpred 11872 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (2 /
(√‘𝐴)) ∈
ℝ) |
| 169 | | subge02 10544 |
. . . . 5
⊢ ((2
∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 /
(√‘𝐴)) ↔
(2 − (2 / (√‘𝐴))) ≤ 2)) |
| 170 | 14, 168, 169 | sylancr 695 |
. . . 4
⊢ (𝐴 ∈ ℕ → (0 ≤
(2 / (√‘𝐴))
↔ (2 − (2 / (√‘𝐴))) ≤ 2)) |
| 171 | 167, 170 | mpbid 222 |
. . 3
⊢ (𝐴 ∈ ℕ → (2
− (2 / (√‘𝐴))) ≤ 2) |
| 172 | 161, 171 | eqbrtrd 4675 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 /
(√‘𝑛))) ≤
2) |
| 173 | 13, 23, 24, 113, 172 | letrd 10194 |
1
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2) |