Proof of Theorem pntlemg
| Step | Hyp | Ref
| Expression |
| 1 | | pntlem1.m |
. . 3
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) |
| 2 | | pntlem1.x |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| 3 | 2 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
| 4 | 3 | rpred 11872 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 5 | | 1red 10055 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 6 | | pntlem1.y |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
| 7 | 6 | simpld 475 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
| 8 | 7 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 9 | 6 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑌) |
| 10 | 2 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 < 𝑋) |
| 11 | 5, 8, 4, 9, 10 | lelttrd 10195 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝑋) |
| 12 | 4, 11 | rplogcld 24375 |
. . . . . 6
⊢ (𝜑 → (log‘𝑋) ∈
ℝ+) |
| 13 | | pntlem1.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 14 | | pntlem1.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 15 | | pntlem1.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 16 | | pntlem1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 17 | | pntlem1.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝐴 + 1) |
| 18 | | pntlem1.f |
. . . . . . . . . 10
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| 19 | | pntlem1.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
| 20 | | pntlem1.u2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| 21 | | pntlem1.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑈 / 𝐷) |
| 22 | | pntlem1.k |
. . . . . . . . . 10
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| 23 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | pntlemc 25284 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) |
| 24 | 23 | simp2d 1074 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
| 25 | 24 | rpred 11872 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 26 | 23 | simp3d 1075 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) |
| 27 | 26 | simp2d 1074 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝐾) |
| 28 | 25, 27 | rplogcld 24375 |
. . . . . 6
⊢ (𝜑 → (log‘𝐾) ∈
ℝ+) |
| 29 | 12, 28 | rpdivcld 11889 |
. . . . 5
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈
ℝ+) |
| 30 | 29 | rprege0d 11879 |
. . . 4
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤
((log‘𝑋) /
(log‘𝐾)))) |
| 31 | | flge0nn0 12621 |
. . . 4
⊢
((((log‘𝑋) /
(log‘𝐾)) ∈
ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈
ℕ0) |
| 32 | | nn0p1nn 11332 |
. . . 4
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) |
| 33 | 30, 31, 32 | 3syl 18 |
. . 3
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) |
| 34 | 1, 33 | syl5eqel 2705 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 35 | 34 | nnzd 11481 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 36 | | pntlem1.n |
. . . 4
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) |
| 37 | | pntlem1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 38 | | pntlem1.w |
. . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
| 39 | | pntlem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
| 40 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39 | pntlemb 25286 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 41 | 40 | simp1d 1073 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
| 42 | 41 | relogcld 24369 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑍) ∈
ℝ) |
| 43 | 42, 28 | rerpdivcld 11903 |
. . . . . 6
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ) |
| 44 | 43 | rehalfcld 11279 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ) |
| 45 | 44 | flcld 12599 |
. . . 4
⊢ (𝜑 →
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ) |
| 46 | 36, 45 | syl5eqel 2705 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 47 | | 0red 10041 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
| 48 | | 4nn 11187 |
. . . . . 6
⊢ 4 ∈
ℕ |
| 49 | | nndivre 11056 |
. . . . . 6
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
| 50 | 43, 48, 49 | sylancl 694 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
| 51 | 46 | zred 11482 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 52 | 34 | nnred 11035 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 53 | 51, 52 | resubcld 10458 |
. . . . 5
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℝ) |
| 54 | 41 | rpred 11872 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ ℝ) |
| 55 | 40 | simp2d 1074 |
. . . . . . . . . 10
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) |
| 56 | 55 | simp1d 1073 |
. . . . . . . . 9
⊢ (𝜑 → 1 < 𝑍) |
| 57 | 54, 56 | rplogcld 24375 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑍) ∈
ℝ+) |
| 58 | 57, 28 | rpdivcld 11889 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈
ℝ+) |
| 59 | | 4re 11097 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
| 60 | | 4pos 11116 |
. . . . . . . 8
⊢ 0 <
4 |
| 61 | 59, 60 | elrpii 11835 |
. . . . . . 7
⊢ 4 ∈
ℝ+ |
| 62 | | rpdivcl 11856 |
. . . . . . 7
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ+ ∧ 4 ∈ ℝ+) →
(((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ+) |
| 63 | 58, 61, 62 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈
ℝ+) |
| 64 | 63 | rpge0d 11876 |
. . . . 5
⊢ (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
| 65 | 50 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ) |
| 66 | 34 | nncnd 11036 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 67 | | 1cnd 10056 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 68 | 65, 66, 67 | addassd 10062 |
. . . . . . . 8
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1))) |
| 69 | 52, 5 | readdcld 10069 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
| 70 | 50, 69 | readdcld 10069 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ) |
| 71 | | peano2re 10209 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
| 72 | 51, 71 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
| 73 | 29 | rpred 11872 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ) |
| 74 | | 2re 11090 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
| 75 | 74 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℝ) |
| 76 | 73, 75 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ) |
| 77 | | reflcl 12597 |
. . . . . . . . . . . . . . . . 17
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) |
| 78 | 73, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) |
| 79 | 78 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ) |
| 80 | 79, 67, 67 | addassd 10062 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) =
((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))) |
| 81 | 1 | oveq1i 6660 |
. . . . . . . . . . . . . 14
⊢ (𝑀 + 1) =
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) |
| 82 | | df-2 11079 |
. . . . . . . . . . . . . . 15
⊢ 2 = (1 +
1) |
| 83 | 82 | oveq2i 6661 |
. . . . . . . . . . . . . 14
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)) |
| 84 | 80, 81, 83 | 3eqtr4g 2681 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2)) |
| 85 | | flle 12600 |
. . . . . . . . . . . . . . 15
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) |
| 86 | 73, 85 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) |
| 87 | 78, 73, 75, 86 | leadd1dd 10641 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) |
| 88 | 84, 87 | eqbrtrd 4675 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) |
| 89 | 40 | simp3d 1075 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 90 | 89 | simp2d 1074 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
| 91 | 69, 76, 50, 88, 90 | letrd 10194 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
| 92 | 69, 50, 50, 91 | leadd2dd 10642 |
. . . . . . . . . 10
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) |
| 93 | 43 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) |
| 94 | | 2cnd 11093 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℂ) |
| 95 | | 2ne0 11113 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
0 |
| 96 | 95 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 0) |
| 97 | 93, 94, 94, 96, 96 | divdiv1d 10832 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2))) |
| 98 | | 2t2e4 11177 |
. . . . . . . . . . . . . 14
⊢ (2
· 2) = 4 |
| 99 | 98 | oveq2i 6661 |
. . . . . . . . . . . . 13
⊢
(((log‘𝑍) /
(log‘𝐾)) / (2
· 2)) = (((log‘𝑍) / (log‘𝐾)) / 4) |
| 100 | 97, 99 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4)) |
| 101 | 100 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(2 · (((log‘𝑍)
/ (log‘𝐾)) /
4))) |
| 102 | 44 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ) |
| 103 | 102, 94, 96 | divcan2d 10803 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(((log‘𝑍) /
(log‘𝐾)) /
2)) |
| 104 | 65 | 2timesd 11275 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(((log‘𝑍) /
(log‘𝐾)) / 4)) =
((((log‘𝑍) /
(log‘𝐾)) / 4) +
(((log‘𝑍) /
(log‘𝐾)) /
4))) |
| 105 | 101, 103,
104 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) |
| 106 | 92, 105 | breqtrrd 4681 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2)) |
| 107 | | fllep1 12602 |
. . . . . . . . . . 11
⊢
((((log‘𝑍) /
(log‘𝐾)) / 2) ∈
ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) |
| 108 | 44, 107 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) |
| 109 | 36 | oveq1i 6660 |
. . . . . . . . . 10
⊢ (𝑁 + 1) =
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1) |
| 110 | 108, 109 | syl6breqr 4695 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1)) |
| 111 | 70, 44, 72, 106, 110 | letrd 10194 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1)) |
| 112 | 68, 111 | eqbrtrd 4675 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)) |
| 113 | 50, 52 | readdcld 10069 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ) |
| 114 | 113, 51, 5 | leadd1d 10621 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))) |
| 115 | 112, 114 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁) |
| 116 | | leaddsub 10504 |
. . . . . . 7
⊢
(((((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ ∧ 𝑀 ∈
ℝ ∧ 𝑁 ∈
ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
| 117 | 50, 52, 51, 116 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
| 118 | 115, 117 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀)) |
| 119 | 47, 50, 53, 64, 118 | letrd 10194 |
. . . 4
⊢ (𝜑 → 0 ≤ (𝑁 − 𝑀)) |
| 120 | 51, 52 | subge0d 10617 |
. . . 4
⊢ (𝜑 → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) |
| 121 | 119, 120 | mpbid 222 |
. . 3
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 122 | | eluz2 11693 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 123 | 35, 46, 121, 122 | syl3anbrc 1246 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 124 | 34, 123, 118 | 3jca 1242 |
1
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |