MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   GIF version

Theorem pntlemg 25287
Description: Lemma for pnt 25303. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemg (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
2 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
32simpld 475 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
43rpred 11872 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
5 1red 10055 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
76simpld 475 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ+)
87rpred 11872 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
96simprd 479 . . . . . . . 8 (𝜑 → 1 ≤ 𝑌)
102simprd 479 . . . . . . . 8 (𝜑𝑌 < 𝑋)
115, 8, 4, 9, 10lelttrd 10195 . . . . . . 7 (𝜑 → 1 < 𝑋)
124, 11rplogcld 24375 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ+)
13 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
14 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
15 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
16 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
17 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
18 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
19 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
20 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
21 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
22 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 25284 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2423simp2d 1074 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
2524rpred 11872 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
2623simp3d 1075 . . . . . . . 8 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
2726simp2d 1074 . . . . . . 7 (𝜑 → 1 < 𝐾)
2825, 27rplogcld 24375 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
2912, 28rpdivcld 11889 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ+)
3029rprege0d 11879 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))))
31 flge0nn0 12621 . . . 4 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0)
32 nn0p1nn 11332 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
3330, 31, 323syl 18 . . 3 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
341, 33syl5eqel 2705 . 2 (𝜑𝑀 ∈ ℕ)
3534nnzd 11481 . . 3 (𝜑𝑀 ∈ ℤ)
36 pntlem1.n . . . 4 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
37 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
38 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
39 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 25286 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
4140simp1d 1073 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
4241relogcld 24369 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
4342, 28rerpdivcld 11903 . . . . . 6 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
4443rehalfcld 11279 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
4544flcld 12599 . . . 4 (𝜑 → (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ)
4636, 45syl5eqel 2705 . . 3 (𝜑𝑁 ∈ ℤ)
47 0red 10041 . . . . 5 (𝜑 → 0 ∈ ℝ)
48 4nn 11187 . . . . . 6 4 ∈ ℕ
49 nndivre 11056 . . . . . 6 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5043, 48, 49sylancl 694 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5146zred 11482 . . . . . 6 (𝜑𝑁 ∈ ℝ)
5234nnred 11035 . . . . . 6 (𝜑𝑀 ∈ ℝ)
5351, 52resubcld 10458 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℝ)
5441rpred 11872 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
5540simp2d 1074 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5655simp1d 1073 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
5754, 56rplogcld 24375 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
5857, 28rpdivcld 11889 . . . . . . 7 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
59 4re 11097 . . . . . . . 8 4 ∈ ℝ
60 4pos 11116 . . . . . . . 8 0 < 4
6159, 60elrpii 11835 . . . . . . 7 4 ∈ ℝ+
62 rpdivcl 11856 . . . . . . 7 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6358, 61, 62sylancl 694 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6463rpge0d 11876 . . . . 5 (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
6550recnd 10068 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
6634nncnd 11036 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
67 1cnd 10056 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6865, 66, 67addassd 10062 . . . . . . . 8 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)))
6952, 5readdcld 10069 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℝ)
7050, 69readdcld 10069 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ)
71 peano2re 10209 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7251, 71syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
7329rpred 11872 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
74 2re 11090 . . . . . . . . . . . . . 14 2 ∈ ℝ
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
7673, 75readdcld 10069 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
77 reflcl 12597 . . . . . . . . . . . . . . . . 17 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7873, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7978recnd 10068 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ)
8079, 67, 67addassd 10062 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)))
811oveq1i 6660 . . . . . . . . . . . . . 14 (𝑀 + 1) = (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1)
82 df-2 11079 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8382oveq2i 6661 . . . . . . . . . . . . . 14 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))
8480, 81, 833eqtr4g 2681 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2))
85 flle 12600 . . . . . . . . . . . . . . 15 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8673, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8778, 73, 75, 86leadd1dd 10641 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8884, 87eqbrtrd 4675 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8940simp3d 1075 . . . . . . . . . . . . 13 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
9089simp2d 1074 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9169, 76, 50, 88, 90letrd 10194 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9269, 50, 50, 91leadd2dd 10642 . . . . . . . . . 10 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
9343recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
94 2cnd 11093 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
95 2ne0 11113 . . . . . . . . . . . . . . 15 2 ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9793, 94, 94, 96, 96divdiv1d 10832 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2)))
98 2t2e4 11177 . . . . . . . . . . . . . 14 (2 · 2) = 4
9998oveq2i 6661 . . . . . . . . . . . . 13 (((log‘𝑍) / (log‘𝐾)) / (2 · 2)) = (((log‘𝑍) / (log‘𝐾)) / 4)
10097, 99syl6eq 2672 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4))
101100oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (2 · (((log‘𝑍) / (log‘𝐾)) / 4)))
10244recnd 10068 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ)
103102, 94, 96divcan2d 10803 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (((log‘𝑍) / (log‘𝐾)) / 2))
104652timesd 11275 . . . . . . . . . . 11 (𝜑 → (2 · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
105101, 103, 1043eqtr3d 2664 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
10692, 105breqtrrd 4681 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
107 fllep1 12602 . . . . . . . . . . 11 ((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10844, 107syl 17 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10936oveq1i 6660 . . . . . . . . . 10 (𝑁 + 1) = ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)
110108, 109syl6breqr 4695 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1))
11170, 44, 72, 106, 110letrd 10194 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1))
11268, 111eqbrtrd 4675 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))
11350, 52readdcld 10069 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ)
114113, 51, 5leadd1d 10621 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)))
115112, 114mpbird 247 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁)
116 leaddsub 10504 . . . . . . 7 (((((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
11750, 52, 51, 116syl3anc 1326 . . . . . 6 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
118115, 117mpbid 222 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
11947, 50, 53, 64, 118letrd 10194 . . . 4 (𝜑 → 0 ≤ (𝑁𝑀))
12051, 52subge0d 10617 . . . 4 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
121119, 120mpbid 222 . . 3 (𝜑𝑀𝑁)
122 eluz2 11693 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
12335, 46, 121, 122syl3anbrc 1246 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
12434, 123, 1183jca 1242 1 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  0cn0 11292  cz 11377  cdc 11493  cuz 11687  +crp 11832  (,)cioo 12175  [,)cico 12177  cfl 12591  cexp 12860  csqrt 13973  expce 14792  eceu 14793  logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  pntlemh  25288  pntlemq  25290  pntlemr  25291  pntlemj  25292  pntlemf  25294
  Copyright terms: Public domain W3C validator