MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0lem Structured version   Visualization version   Unicode version

Theorem plyeq0lem 23966
Description: Lemma for plyeq0 23967. If  A is the coefficient function for a nonzero polynomial such that  P ( z )  =  sum_ k  e.  NN0 A ( k )  x.  z ^
k  =  0 for every  z  e.  CC and  A ( M ) is the nonzero leading coefficient, then the function  F ( z )  =  P ( z )  /  z ^ M is a sum of powers of  1  /  z, and so the limit of this function as  z 
~~> +oo is the constant term,  A ( M ). But  F ( z )  =  0 everywhere, so this limit is also equal to zero so that  A ( M )  =  0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1  |-  ( ph  ->  S  C_  CC )
plyeq0.2  |-  ( ph  ->  N  e.  NN0 )
plyeq0.3  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyeq0.4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyeq0.5  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
plyeq0.6  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
plyeq0.7  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
Assertion
Ref Expression
plyeq0lem  |-  -.  ph
Distinct variable groups:    z, k, A    k, M    k, N, z    ph, k, z    S, k, z
Allowed substitution hint:    M( z)

Proof of Theorem plyeq0lem
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
3 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
4 1zzd 11408 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  1  e.  ZZ )
5 plyeq0.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plyeq0.1 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S  C_  CC )
7 0cn 10032 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  e.  CC )
98snssd 4340 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  { 0 }  C_  CC )
106, 9unssd 3789 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 10017 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
12 ssexg 4804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 11298 . . . . . . . . . . . . . . . . . 18  |-  NN0  e.  _V
15 elmapg 7870 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 6057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A : NN0 --> CC )
19 elfznn0 12433 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
20 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2118, 19, 20syl2an 494 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2221adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( A `  k )  e.  CC )
2322abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  RR )
2423recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  CC )
25 divcnv 14585 . . . . . . . . . . 11  |-  ( ( abs `  ( A `
 k ) )  e.  CC  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
27 nnex 11026 . . . . . . . . . . . 12  |-  NN  e.  _V
2827mptex 6486 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
2928a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
30 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  /  n )  =  ( ( abs `  ( A `  k
) )  /  m
) )
31 eqid 2622 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  /  n
) )
32 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  /  m )  e. 
_V
3330, 31, 32fvmpt 6282 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
3433adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
35 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( A `  k )
)  e.  RR  /\  m  e.  NN )  ->  ( ( abs `  ( A `  k )
)  /  m )  e.  RR )
3623, 35sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  e.  RR )
3734, 36eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  e.  RR )
38 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
n ^ ( k  -  M ) )  =  ( m ^
( k  -  M
) ) )
3938oveq2d 6666 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
40 eqid 2622 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) )
41 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
4239, 40, 41fvmpt 6282 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4342adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4421ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( A `
 k )  e.  CC )
4544abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  RR )
46 nnrp 11842 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
4746adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR+ )
48 elfzelz 12342 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
49 cnvimass 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( `' A " ( S 
\  { 0 } ) )  C_  dom  A
50 fdm 6051 . . . . . . . . . . . . . . . . . . . 20  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
5117, 50syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  dom  A  =  NN0 )
5249, 51syl5sseq 3653 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  NN0 )
53 plyeq0.6 . . . . . . . . . . . . . . . . . . 19  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
54 nn0ssz 11398 . . . . . . . . . . . . . . . . . . . . 21  |-  NN0  C_  ZZ
5552, 54syl6ss 3615 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ )
56 plyeq0.7 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
57 plyeq0.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  N  e.  NN0 )
5857nn0red 11352 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
5952sselda 3603 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  e.  NN0 )
60 plyeq0.4 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
61 plyco0 23948 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
6257, 18, 61syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
) )
6360, 62mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
6463adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
65 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
6617, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A  Fn  NN0 )
67 elpreima 6337 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  Fn  NN0  ->  ( z  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( z  e.  NN0  /\  ( A `  z
)  e.  ( S 
\  { 0 } ) ) ) )
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( z  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( z  e.  NN0  /\  ( A `
 z )  e.  ( S  \  {
0 } ) ) ) )
6968simplbda 654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  e.  ( S 
\  { 0 } ) )
70 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A `  z )  e.  ( S  \  { 0 } )  ->  ( A `  z )  =/=  0
)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  =/=  0 )
72 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  =  z  ->  ( A `  k )  =  ( A `  z ) )
7372neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
( A `  k
)  =/=  0  <->  ( A `  z )  =/=  0 ) )
74 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
k  <_  N  <->  z  <_  N ) )
7573, 74imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  z  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7675rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  NN0  ->  ( A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )  ->  (
( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7759, 64, 71, 76syl3c 66 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  <_  N )
7877ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )
79 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  N  ->  (
z  <_  x  <->  z  <_  N ) )
8079ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  N  ->  ( A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x 
<-> 
A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
8180rspcev 3309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  RR  /\  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
8258, 78, 81syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x )
83 suprzcl 11457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8455, 56, 82, 83syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8553, 84syl5eqel 2705 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  ( `' A " ( S 
\  { 0 } ) ) )
8652, 85sseldd 3604 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
8786nn0zd 11480 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
88 zsubcl 11419 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  -  M
)  e.  ZZ )
8948, 87, 88syl2anr 495 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
9089ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  ZZ )
9147, 90rpexpcld 13032 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR+ )
9291rpred 11872 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR )
9345, 92remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e.  RR )
9443, 93eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  RR )
95 nnrecre 11057 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
9695adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( 1  /  m )  e.  RR )
9722absge0d 14183 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  0  <_  ( abs `  ( A `  k )
) )
9897adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( abs `  ( A `  k )
) )
99 nnre 11027 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
10099adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR )
101 nnge1 11046 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  1  <_  m )
102101adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  m )
103 1red 10055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  e.  RR )
10490zred 11482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  RR )
105 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  < 
M )
10648adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
107106ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  ZZ )
10887ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  ZZ )
109 zltp1le 11427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
110107, 108, 109syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
111105, 110mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  +  1 )  <_  M )
11219adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
113112nn0red 11352 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
114113ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  RR )
11586adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  NN0 )
116115nn0red 11352 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  RR )
117116ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  RR )
118114, 103, 117leaddsub2d 10629 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( k  +  1 )  <_  M  <->  1  <_  ( M  -  k ) ) )
119111, 118mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_ 
( M  -  k
) )
120113recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
121120ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  CC )
122116recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  CC )
123122ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  CC )
124121, 123negsubdi2d 10408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u (
k  -  M )  =  ( M  -  k ) )
125119, 124breqtrrd 4681 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  -u ( k  -  M
) )
126103, 104, 125lenegcon2d 10610 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  <_  -u 1 )
127 neg1z 11413 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  ZZ
128 eluz 11701 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  -  M
)  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  e.  ( ZZ>= `  ( k  -  M ) )  <->  ( k  -  M )  <_  -u 1
) )
12990, 127, 128sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( -u
1  e.  ( ZZ>= `  ( k  -  M
) )  <->  ( k  -  M )  <_  -u 1
) )
130126, 129mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u 1  e.  ( ZZ>= `  ( k  -  M ) ) )
131100, 102, 130leexp2ad 13041 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( m ^ -u 1
) )
132 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  CC )
133132adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  CC )
134 expn1 12870 . . . . . . . . . . . . . 14  |-  ( m  e.  CC  ->  (
m ^ -u 1
)  =  ( 1  /  m ) )
135133, 134syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ -u 1 )  =  ( 1  /  m ) )
136131, 135breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( 1  /  m
) )
13792, 96, 45, 98, 136lemul2ad 10964 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  <_ 
( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
13824adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  CC )
139 nnne0 11053 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  =/=  0 )
140139adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  =/=  0 )
141138, 133, 140divrecd 10804 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  =  ( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
14234, 141eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
1  /  m ) ) )
143137, 43, 1423brtr4d 4685 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  <_  ( ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) ) `
 m ) )
14491rpge0d 11876 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( m ^ (
k  -  M ) ) )
14545, 92, 98, 144mulge0d 10604 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
146145, 43breqtrrd 4681 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) )
1471, 4, 26, 29, 37, 94, 143, 146climsqz2 14372 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
14827mptex 6486 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
149148a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
15038oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
151 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) )
152 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
153150, 151, 152fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
154153ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
15518adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  A : NN0
--> CC )
156155, 19, 20syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
157132ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  e.  CC )
158139ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  =/=  0 )
15987adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  M  e.  ZZ )
16048, 159, 88syl2anr 495 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
161157, 158, 160expclzd 13013 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  e.  CC )
162156, 161mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  e.  CC )
163154, 162eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
164163an32s 846 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
165164adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  CC )
16692recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  CC )
16744, 166absmuld 14193 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( abs `  ( m ^ (
k  -  M ) ) ) ) )
16892, 144absidd 14161 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( m ^ (
k  -  M ) ) )  =  ( m ^ ( k  -  M ) ) )
169168oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
170167, 169eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
171153adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
172171fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) ) `  m ) )  =  ( abs `  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) ) ) )
173170, 172, 433eqtr4rd 2667 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( abs `  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) ) )
1741, 4, 149, 29, 165, 173climabs0 14316 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 ) )
175147, 174mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
176113adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  e.  RR )
177 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  <  M )
178176, 177ltned 10173 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  =/=  M )
179 velsn 4193 . . . . . . . . . . 11  |-  ( k  e.  { M }  <->  k  =  M )
180179necon3bbii 2841 . . . . . . . . . 10  |-  ( -.  k  e.  { M } 
<->  k  =/=  M )
181178, 180sylibr 224 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  -.  k  e.  { M } )
182181iffalsed 4097 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
183175, 182breqtrrd 4681 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
184 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
185184ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  e.  CC )
186 nnne0 11053 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
187186ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  =/=  0 )
18889ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( k  -  M
)  e.  ZZ )
189185, 187, 188expclzd 13013 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( n ^ (
k  -  M ) )  e.  CC )
190189mul02d 10234 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( 0  x.  (
n ^ ( k  -  M ) ) )  =  0 )
191 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( A `  k
)  =  0 )
192191oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  ( 0  x.  ( n ^
( k  -  M
) ) ) )
193191ifeq1d 4104 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  if ( k  e.  { M } ,  0 ,  0 ) )
194 ifid 4125 . . . . . . . . . . . . 13  |-  if ( k  e.  { M } ,  0 , 
0 )  =  0
195193, 194syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
196190, 192, 1953eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
19721adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( A `  k )  e.  CC )
198197ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  CC )
199198mulid1d 10057 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  1 )  =  ( A `  k ) )
200 nn0ssre 11296 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN0  C_  RR
20152, 200syl6ss 3615 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  RR )
202201ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  C_  RR )
20356ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  =/=  (/) )
20482ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
20519ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  NN0 )
206 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
20717, 19, 206syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
208207anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( A `
 k )  =/=  0 ) )
209 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } )  <->  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( A `  k )  =/=  0 ) )
210208, 209sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } ) )
211 difun2 4048 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  u.  { 0 } )  \  {
0 } )  =  ( S  \  {
0 } )
212210, 211syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( S  \  {
0 } ) )
213 elpreima 6337 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  Fn  NN0  ->  ( k  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( k  e.  NN0  /\  ( A `  k
)  e.  ( S 
\  { 0 } ) ) ) )
21466, 213syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
215214ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
216205, 212, 215mpbir2and 957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  ( `' A "
( S  \  {
0 } ) ) )
217 suprub 10984 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  k  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
k  <_  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  ) )
218202, 203, 204, 216, 217syl31anc 1329 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  ) )
219218, 53syl6breqr 4695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
220219adantlr 751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  ( A `  k )  =/=  0
)  ->  k  <_  M )
221220adantlr 751 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
222 simpllr 799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  <_  k )
223113ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  RR )
224116ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  RR )
225223, 224letri3d 10179 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  =  M  <->  ( k  <_  M  /\  M  <_ 
k ) ) )
226221, 222, 225mpbir2and 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  =  M )
227226oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  ( M  -  M ) )
228122ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  CC )
229228subidd 10380 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( M  -  M )  =  0 )
230227, 229eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  0 )
231230oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  ( n ^
0 ) )
232184ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  n  e.  CC )
233232exp0d 13002 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ 0 )  =  1 )
234231, 233eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  1 )
235234oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  1 ) )
236226, 179sylibr 224 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  { M } )
237236iftrued 4094 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  ( A `  k ) )
238199, 235, 2373eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
239196, 238pm2.61dane 2881 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  ->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) )  =  if ( k  e. 
{ M } , 
( A `  k
) ,  0 ) )
240239mpteq2dva 4744 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) ) )
241 fconstmpt 5163 . . . . . . . . 9  |-  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
242240, 241syl6eqr 2674 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } ) )
243 ifcl 4130 . . . . . . . . . 10  |-  ( ( ( A `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC )
244197, 7, 243sylancl 694 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  e.  CC )
245 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
2461eqimss2i 3660 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  C_  NN
247246, 27climconst2 14279 . . . . . . . . 9  |-  ( ( if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
248244, 245, 247sylancl 694 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
249242, 248eqbrtrd 4675 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
250183, 249, 113, 116ltlecasei 10145 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
251 snex 4908 . . . . . . . 8  |-  { 0 }  e.  _V
25227, 251xpex 6962 . . . . . . 7  |-  ( NN 
X.  { 0 } )  e.  _V
253252a1i 11 . . . . . 6  |-  ( ph  ->  ( NN  X.  {
0 } )  e. 
_V )
254164anasss 679 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( 0 ... N
)  /\  m  e.  NN ) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
255 plyeq0.5 . . . . . . . . . . . 12  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
256255fveq1d 6193 . . . . . . . . . . 11  |-  ( ph  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m ) )
257256adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) `  m ) )
258132adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
259 0pval 23438 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
0p `  m
)  =  0 )
260258, 259syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  0 )
261 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  (
z ^ k )  =  ( m ^
k ) )
262261oveq2d 6666 . . . . . . . . . . . . 13  |-  ( z  =  m  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( m ^ k
) ) )
263262sumeq2sdv 14435 . . . . . . . . . . . 12  |-  ( z  =  m  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) ) )
264 eqid 2622 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
265 sumex 14418 . . . . . . . . . . . 12  |-  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( m ^ k
) )  e.  _V
266263, 264, 265fvmpt 6282 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
267258, 266syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
268257, 260, 2673eqtr3d 2664 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
269268oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) ) )
270 expcl 12878 . . . . . . . . . 10  |-  ( ( m  e.  CC  /\  M  e.  NN0 )  -> 
( m ^ M
)  e.  CC )
271132, 86, 270syl2anr 495 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  e.  CC )
272139adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
273258, 272, 159expne0d 13014 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  =/=  0 )
274271, 273div0d 10800 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  0 )
275 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0 ... N )  e. 
Fin )
276 expcl 12878 . . . . . . . . . . 11  |-  ( ( m  e.  CC  /\  k  e.  NN0 )  -> 
( m ^ k
)  e.  CC )
277258, 19, 276syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ k )  e.  CC )
278156, 277mulcld 10060 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ k ) )  e.  CC )
279275, 271, 278, 273fsumdivc 14518 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
280269, 274, 2793eqtr3d 2664 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
281 fvconst2g 6467 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `
 m )  =  0 )
2828, 281sylan 488 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  0 )
283159adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  M  e.  ZZ )
28448adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
285157, 158, 283, 284expsubd 13019 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  =  ( ( m ^ k )  / 
( m ^ M
) ) )
286285oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
287271adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  e.  CC )
288273adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  =/=  0 )
289156, 277, 287, 288divassd 10836 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
290286, 154, 2893eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) ) )
291290sumeq2dv 14433 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
292280, 282, 2913eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m ) )
2931, 2, 3, 250, 253, 254, 292climfsum 14552 . . . . 5  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  sum_ k  e.  ( 0 ... N
) if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
294 suprleub 10989 . . . . . . . . . . . 12  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  N  e.  RR )  ->  ( sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  N )
)
295201, 56, 82, 58, 294syl31anc 1329 . . . . . . . . . . 11  |-  ( ph  ->  ( sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
29678, 295mpbird 247 . . . . . . . . . 10  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N
)
29753, 296syl5eqbr 4688 . . . . . . . . 9  |-  ( ph  ->  M  <_  N )
298 nn0uz 11722 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
29986, 298syl6eleq 2711 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
30057nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
301 elfz5 12334 . . . . . . . . . 10  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( M  e.  ( 0 ... N )  <->  M  <_  N ) )
302299, 300, 301syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  ( 0 ... N )  <-> 
M  <_  N )
)
303297, 302mpbird 247 . . . . . . . 8  |-  ( ph  ->  M  e.  ( 0 ... N ) )
304303snssd 4340 . . . . . . 7  |-  ( ph  ->  { M }  C_  ( 0 ... N
) )
30518, 86ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( A `  M
)  e.  CC )
306 elsni 4194 . . . . . . . . . . 11  |-  ( k  e.  { M }  ->  k  =  M )
307306fveq2d 6195 . . . . . . . . . 10  |-  ( k  e.  { M }  ->  ( A `  k
)  =  ( A `
 M ) )
308307eleq1d 2686 . . . . . . . . 9  |-  ( k  e.  { M }  ->  ( ( A `  k )  e.  CC  <->  ( A `  M )  e.  CC ) )
309305, 308syl5ibrcom 237 . . . . . . . 8  |-  ( ph  ->  ( k  e.  { M }  ->  ( A `
 k )  e.  CC ) )
310309ralrimiv 2965 . . . . . . 7  |-  ( ph  ->  A. k  e.  { M }  ( A `  k )  e.  CC )
3113olcd 408 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... N )  C_  ( ZZ>=
`  0 )  \/  ( 0 ... N
)  e.  Fin )
)
312 sumss2 14457 . . . . . . 7  |-  ( ( ( { M }  C_  ( 0 ... N
)  /\  A. k  e.  { M }  ( A `  k )  e.  CC )  /\  (
( 0 ... N
)  C_  ( ZZ>= ` 
0 )  \/  (
0 ... N )  e. 
Fin ) )  ->  sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
313304, 310, 311, 312syl21anc 1325 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
314 ltso 10118 . . . . . . . . 9  |-  <  Or  RR
315314supex 8369 . . . . . . . 8  |-  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  e.  _V
31653, 315eqeltri 2697 . . . . . . 7  |-  M  e. 
_V
317 fveq2 6191 . . . . . . . 8  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
318317sumsn 14475 . . . . . . 7  |-  ( ( M  e.  _V  /\  ( A `  M )  e.  CC )  ->  sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
319316, 305, 318sylancr 695 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
320313, 319eqtr3d 2658 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  =  ( A `  M ) )
321293, 320breqtrd 4679 . . . 4  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  ( A `
 M ) )
322246, 27climconst2 14279 . . . . 5  |-  ( ( 0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  {
0 } )  ~~>  0 )
3237, 245, 322mp2an 708 . . . 4  |-  ( NN 
X.  { 0 } )  ~~>  0
324 climuni 14283 . . . 4  |-  ( ( ( NN  X.  {
0 } )  ~~>  ( A `
 M )  /\  ( NN  X.  { 0 } )  ~~>  0 )  ->  ( A `  M )  =  0 )
325321, 323, 324sylancl 694 . . 3  |-  ( ph  ->  ( A `  M
)  =  0 )
326 fvex 6201 . . . 4  |-  ( A `
 M )  e. 
_V
327326elsn 4192 . . 3  |-  ( ( A `  M )  e.  { 0 }  <-> 
( A `  M
)  =  0 )
328325, 327sylibr 224 . 2  |-  ( ph  ->  ( A `  M
)  e.  { 0 } )
329 elpreima 6337 . . . . . 6  |-  ( A  Fn  NN0  ->  ( M  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) ) )
33066, 329syl 17 . . . . 5  |-  ( ph  ->  ( M  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( M  e.  NN0  /\  ( A `
 M )  e.  ( S  \  {
0 } ) ) ) )
33185, 330mpbid 222 . . . 4  |-  ( ph  ->  ( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) )
332331simprd 479 . . 3  |-  ( ph  ->  ( A `  M
)  e.  ( S 
\  { 0 } ) )
333332eldifbd 3587 . 2  |-  ( ph  ->  -.  ( A `  M )  e.  {
0 } )
334328, 333pm2.65i 185 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416   0pc0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437
This theorem is referenced by:  plyeq0  23967
  Copyright terms: Public domain W3C validator